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Adaptive: Attacker knows the
watermarking algorithm, but not the
secret watermarking key

Surrogate Model: Controls less
capable, open-source generator ' : 2 perceptual Distance (LPIPS) 5
Compute: Limited resources, cannot

train their own generator from scratch

Dataset: Any public image dataset

Queries: Limited in the number of

queries to the watermarked generator

o
o

I
N

o
>
(A 2 4 R X KN

Accuracy (TPR@1%FPR) U

o
<)

Goals: Vo S | o ) i :
S ‘ S - e — v [ 7 4 - S | — 5 o A . |
e Evade watermark detection (p>0.01) R ‘ -, =l -, = Adversarial Noise dversaria

=0.1 Compression
* Preserve image quality (FID, CLIP score) GRS (o 50.79)

P-value = 0.28  P-value = 1.77e-09  P-value = 0.52
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