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Disinformation
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How a fake image Of a Pentagon eprOSion Meanwhile, Russian Z-channels, for the lack of a better idea, are
. o spreading this Al-generated image as BREAKING NEWS EXPLOSIONS AT
shared on Twitter caused a real dip on Wall THE PENTAGON RIGHT NOW.

Street oov

—uronews, May 2023 [2]

The viral Al-generated image showing an explosion near the
Pentagon is 'truly the tip of the iceberg of what's to come,' tech CEO

says

Grace Dean Jun9,2023, 6:33 R f ™~ "

Business Insider; June 2023 [ 3]

Fake Pentagon explosion photo goes viral:
How to spot an Al image

£ ecra May 2025 (4]




Personalized Attacks

Deepfake porn could be a growing

problem amid Al race

APN news, April 2023 [15]
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Deepfake porn of TikTok stars thrives on Twitter even
though it breaks the platform’s rules

Young TikTok stars have become a focus of nonconsensual pornographic deepfake creators.

< NBC, June 2025 £

/ ‘ﬁ\ Public Service Announcement (=
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June 5, 2023 Malicious Actors Manipulating Photos and Videos
to Create Explicit Content and Sextortion Schemes
Alert Number
1-060523-PSA The FBI is warning the public of malicious actors creating synthetic content
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Draft Legislation

EU Al Ac

2.3. Proportionality

The proposal builds on existing legal frameworks and 1s proportionate and necessary to achieve its objectives, since it
follows a risk-based approach and imposes regulatory burdens only when an Al system 1s likely to pose high risks to
fundamental rights and safety. For other, non-high-risk Al systems, only very limited transparency obligations are
imposed, for example 1n terms of the provision of information to flag the use of an Al system when interacting with
humans. For high-risk Al systems, the requirements of high quality data, documentation and traceability,
transparency, human oversight, accuracy and robustness, are strictly necessary to mitigate the risks to fundamental
rights and safety posed by Al and that are not covered by other existing legal frameworks. Harmonised standards and
supporting guidance and compliance tools will assist providers and users in complying with the requirements laid
down by the proposal and minimise their costs. The costs incurred by operators are proportionate to the objectives
achieved and the economic and reputational benefits that operators can expect from this proposal.
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Controlling Misuse

OpenAl ToS

(c) Restrictions. You may not (i) use the Services in a way that infringes, misappropriates or violates any person’s
rights; (ii) reverse assemble, reverse compile, decompile, translate or otherwise attempt to discover the source
code or underlying components of models, algorithms, and systems of the Services (except to the extent such
restrictions are contrary to applicable law); (iii) use output from the Services to develop models that compete with
OpenAl; (iv) except as permitted through the API, use any automated or programmatic method to extract data or
output from the Services, including scraping, web harvesting, or web data extraction; (v) represent that output from
the Services was human-generated when it is not or otherwise violate our Usage Policies; (vi) buy, sell, or transfer

OpenA\,Terms of Use



Watermarking Pledge

Reuters

Technology

OpenAl, Google, others pledge to
watermark Al content for safety, White
House says

By Diane Bartz and Krystal Hu
July 21, 2023 1:44 PM PDT - Updated 19 days ago ‘ D | LAaJ ‘ <J

July 2023, Reuters News Article




VWatermarking Pledge (against Misuse)

GOOQIC DeepMind Research Blog Impact Safety & Ethics About Careers ———

% Research

ldentifying Al-generated
Images with SynthlD

August 29, 2023

Google SynthlD, August 29th
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Overview

Untrustworthy Users

Published as a conference paper at ICLR 2021

2022 IEEE Symposium on Security and Privacy (SP) Under review as a conference paper at ICLR 2024

PTW: Pivotal Tuning Watermarking for Pre-Trained Image Generators

DEEP NEURAL NETWORK FINGERPRINTING BY
CONFERRABLE ADVERSARIAL EXAMPLES

Nils Lukas, Yuxuan Zhang, Florian Kerschbaum
University of Waterloo
{nlukas, y2536zhang, florian.kerschbaum}@uwaterloo.ca

ABSTRACT

In Machine Learning as a Service, a provider trains a deep neural network and
gives many users access. The hosted (source) model is susceptible to model steal-
ing attacks, where an adversary derives a surrogate model from API ac
source model. For post hoc detection of such attacks, the provider needs a robust
method to determine whether a suspect model is a surrogate of their model. We
propose a fingerprinting method for deep neural network classifiers that extracts a
set of inputs from the source model so that only surrogates agree with the source
model on the classi ion of such inputs. These inputs are a subclass of trans-
ferable adversarial examples which we call conferrable adversarial examples that
exclusively transfer with a target label from a source model to its surrogates. We
propose a new method to generate these conferrable adversarial example:
present an extensive study on the irremovability of our fingerprint against fine-
tuning, weight pruning, retraining, retraining with different architectures, three
model extraction attacks from related work, transfer learning, adversarial train-
ing, and two new adaptive attacks. Our fingerprint is robust against d;
related model extraction attacks, and even transfer learning when the attacker has
no access to the model provider’s dataset. Our fingerprint is the first method that
reaches a ROC AUC of 1.0 in verifying surrogates, compared to a ROC AUC of
0.63 by previous fingerprints.

1 INTRODUCTION

Deep neural network (DNN) cla:
fiers have become indispensable tools

fi . Reference | -

for addressing practically relevant Model _ |, orse”, ruck
problems, such as autonomous driv- ErdcdLabely
ing (Tian et al., 2018), natural lan- I SO |y rag', apianh

guage processing (Young et al., 2018)
and health care predictions (Esteva
et al., 2019). While a DNN pro-
vides substantial utility, training a
DNN is costly because uf ddld
ion (collection, : < ?
and cleaning) and computational re- Figure 1: A set of conferrable adversarial examples used as
sources required for validation of a fingerprint to identify surrogate models.
model (Press, 2016). For this reason,
DNNs are often provided by a single entity and consumed by many, such as in the context of Machine
Learning as a Service (MLaaS). A threat to the provider is model stealing, in which an adversary
derives a surrogate model from only API access to a source model. We refer to an independently
trained model for the same task as a reference model.

T Knowledge _ Predicied Labels
+ Distilation
[Surrogate | _, o arac ‘
» > "car’ “frog", "airplane’
Modol G RS
Prodicied [abeis  gource

Consider a MLaa$S provider that wants to protect their service and hence restrict its redistribution,
e.g., through a contractual usage agreement because trained models constitute their intellectual prop-
erty. A threat to the model provider is an attacker who derives surrogate models and publicly deploys
them. Since access to the source model has to be provided, u: cannot be prevented from deriving
surrogate models. Krishna et al. (2019) have shown that model stealing is (i) effective, because even

i
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SoK: How Robust is Image Classification Deep
Neural Network Watermarking?

Nils Lukas, Edward Jiang, Xinda Li, Florian Kerschbaum
University of Waterloo

Waterloo, Canada

{nlukas, eydjiang, xinda.li, florian kerschbaum} @uwaterloo.ca

Abstract—Deep Neural Network (DNN) watermarking is a
leImd for provenance verification of DNN models. Watermark-
uld be robust against watermark removal attacks that de-
a \unagnl( model that evades provenance verification. Many
watermarking schemes that claim robustness have been proposed,
but their robustness is only validated in isolation against a
relatively small set of attacks. There is no systematic, empirical

of common, comprehensive
oval attacks. T ty about a watermarking
scheme’s robustness causes difficulty to trust their deployment
In this paper, we evaluate whether recently proposed
schemes that claim robustness are robust against
ethods from the
literature that (i) are known removal attacks, (i) derive surrogate
models but have not been evaluated as removal attacks, and (iii)
novel removal attacks. Weight shifting and smooth retraining are
oval attacks adapted to the DNN watermarking schy
surveyed in this paper. We propose taxonomies for watermarking
schemes and removal attacks. Our empirical evaluation includes
an ablation study over sets of parameters for each attack
and watermarking scheme on the image classification datasets
CIFAR-10 and ImageNet. Surprisingly, our study shows that
none of the surveyed watermarking schemes is robust in practice.
We find that schemes fail to withstand adaptive attacks and
known methods for deriving surrogate models that have not been
evaluated as removal attacks. This points to intris s
how robustness is currently evaluated. Our evaluation xmludu
a discussion of the runtime of each attack to under
practical relevance. While none of the schemes is robust ag:
all attacks, none of the attacks removes all watermarks. We show
that attacks can be combined and find combined attacks that
remove all watermarks. We show that watermarking schemes
need to be evaluated ag:
attacks with a more realistic adversary model. Our source
code and a complete dataset of evaluation results are publicly
available, which allows to independently verify our conclusions.

Index Terms—Deep Neural Network, Watermarking, Robust-

ness, Removal Attacks, Image Classification

I. INTRODUCTION

Deep Neural Networks (DNN) have become state-of-the
art algorithms for applications such as facial recognition [1]
[3), medical image classification [4] and autonomous driv
ing [5). Training a DNN model can be expensive due to
data preparation (collection, organizing, and cleaning) and
computational resources required for validating a model [6]
For this reason, DNNs are often provided by a single entity
and consumed by many, such as in Machine Learning-as
a-Service (MLaaS). A model provider may want to restrict

unauthorized redistribution of their source model. The threat

© 2022, Nils Lukas. Under license to |EEE. 78
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to the model provider is a user who derives a (stolen) surrogate
model from access to the source model and publicly deploys
their surrogate model. Krishna et al. [7) have shown that
such model stealing attacks can be (i) effective because even
high-fidelity surrogates of large models like BERT [8] can be
derived with limited access to domain data and (ii) practical
because surrogate models can be derived for a fraction of the
costs compared to retraining a model

Papernot et al. [9] describe the confidentiality requirement
as one of the core principles for security and privacy in
machine learning. Preserving a model's confidentiality refers
to protecting its parameters against model stealing attacks.
Confidentiality is important because the source model con
stitutes intellectual property and may leak information about
its training dataset. Preventing model stealing is difficult [7],
[10}-[12], but detecting whether the confidentiality of a source
model has been broken serves as a powerful deterrent and can
be achieved through DNN watermarking.

DNN watermarking [13] is a method designed to detect sur.
rogate models. Watermarking embeds a message into a model
that is later extractable using a secret key. Developing DNN
watermarking schemes is an active area of research studied
by large corporations such as Microsoft [14], Google [15]
and IBM [16]. Robustness is a core security property of
watermarking, which states that an attacker cannot derive
surrogate models from access to the source model that do not
retain the watermark. Watermarking schemes that are robust
against such watermark removal attacks are needed to deter
redistribution by adversaries. Claimed security properties of
some existing watermarking schemes [15], [16] had been
broken by novel attacks [17]-[19], but it is unclear how these
attacks generalize to other watermarks.

We perform a systematic evaluation and propose taxonomies
for watermarking schemes and attacks. We survey 29 methods
from the literature that (i) are known removal attacks, such as
weight pruning [20] or knowledge distillation [21], (ii) derive
surrogate models but have not been evaluated as removal
attacks, and (iii) novel removal attacks. A removal attack
is effective if the surrogate model has a high test accuracy
and does not retain the watermark. It is efficient if resources
required to run the attack, such as its runtime, are small
compared to retraining a model from scratch. We measure both
effectiveness and efficiency. In our taxonomy, we categorize
attacks into (i) model modification, (ii) input preprocessing,

Restrictions apply.
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Abstract
Deepfakes refer to content synthesized using deep genera-
tors, which, when misused, have the potential to erode trust in
digital media. Synthesizing high-quality deepfakes requires
access to large and complex generators only a few entities can
train and provide. The threat is malicious users that exploit

Florian Kerschbaum
University of Waterloo

‘While some deepfakes can be created using traditional
computer graphics, using deep learning methods such as the
Generative Adversarial Network (GAN) [19] can reduce the
time and effort needed to create deepfakes. However, training
GANs requires a significant investment in terms of computa-
tional resources [26] and data preparation, including collec-

access to the provided model and harmful deepfak
without risking detection. Watermarking makes deepfakes de-
tectable by embedding an identifiable code into the generator
that is later extractable from its generated images. We propose
Pivotal Tuning Watermarking (PTW), a method for water-
marking pre-trained generators (i) three orders of magnitude
faster than watermarking from scratch and (ii) without the
need for any training data. We improve existing watermark-
ing methods and scale to generators 4 larger than related
work. PTW can embed longer codes than existing methods
while better preserving the generator’s image quality. We
propose rigorous, game-based definitions for robustness and
undetectability and our study reveals that watermarking is
not robust against an adaptive white-box attacker who has
control over the generator’s parameters. We propose an adap-
tive attack that can successfully remove any watermarking
with access to only 200 non-watermarked images. Our work
challenges the trustworthiness of watermarking for d k

tion, ization, and cl These costs make training
image generators a prohibitive endeavor for many. As a con-
sequence, generators are often trained by one provider and
made available to many users through Machine-Learning-
as-a-Service [6]. The provider wants to disclose their model
responsibly and deter model misuse, which is the unethical use
of their model to generate harmful or misleading content [36].
Problem. Consider a provider who wants to make their
image publicly ible under a 1 usage
agreement that serves to prevent misuse of the model. The
threat is a user who breaks this agreement and uses the gener-
ator to synthesize and distribute harmful deepfakes without
detection. To mitigate this threat in practice, companies such
as OpenAl have deployed invasive prevention measures by
providing only monitored access to their models Lhmugh a
black-box APIL. Users that synthesize deepfakes are d
when they break the usage agreement if the provider matches

d when the p ofa are

1 Introduction

Deepfakes, a term used to describe sym.heue media generated
using deep image have id d atten-

the deepfake with their datat This helps deter misuse of
the model, but it can also lead to a lack of transparency and
limit researchers and individuals from using their technol-
ogy [12,50]. For example, query monitoring which is used
in practice by companies such as OpenAl raises privacy con-
cerns as it involves collecting and potentially storing sensitive
infi ion about the user’s queries. A better solution would

be to impl thods that deter model misuse without the

tion in recent years. While deepfakes offer many beneficial
use cases, for example in scientific research [9,48] or educa-
tion [16,39,47], they have also raised ethical concerns because
of their potential to be misused which can lead to an erosion
of trust in digital media. Deepfakes have been scrutinized for
their use in disinformation campaigns [2,23], impersonation
attacks [15,35] or when used to create non-consensual media
of an individual violating their privacy [10,20]. These threats
highlight the need to control the misuse of deepfakes.

need for query monitoring.

A potential solution is to rely on deepfake detection meth-
ods [7,13,17,24,25,30,40,56). The idea guiding such passive
methods is to exploit artifacts in the synthetic images that
separate fake and real content. While these detectors protect
well against some deepfakes it has been d ated that

§To appear at USENIX Security 2023.
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LEVERAGING OPTIMIZATION FOR ADAPTIVE ATTACKS ON
IMAGE WATERMARKS

Nils Lukas, Abdulrahman Diaa, Lucas Fenaux, Florian Kerschbaum
University of Waterloo, Canada
{nlukas, abdulrahman.diaa, lucas.fenaux, florian.kerschbaum}@uwaterloo.ca

ABSTRACT
Untrustworthy users can mlsuse 1mage gcnemlors to sym.hesnzc high-quality deepfakes and engage in
online spam or deters misuse by marking generated content
with a hidden bling its d ion using a secret king key. A core security
property of watermarking is robustness, wluch states that an attackcr can only evade detection by
substantially degrading image quality. A b requires designing an adaptive attack for
the specific A chall when i and their

(adaptive) attacks is to determine whether an adaptive attack is optimal, i.c., it is the best possible
attack. We solve this problem by defining an objective function and then approach adaptive attacks as
an optimization problem. The core idea of our adaptive attacks is to replicate secret watermarking
keys locally by creating gate keys that are di iable and can be used to optimize the attack’s
parameters. We demonstrate for Stable Diffusion models that such an attacker can break all five
surveyed watermarking methods at negligible degradation in image quality. These findings emphasize
the need for more rigorous robustness testing against adaptive, learnable attackers.

Keywords Watermarking, Stable Diffusion, Robustness, Adaptive Attacks

1 Introduction
D are images hesi usmg deep image generators that can be difficult to distinguish from real images.
While deepfakes can serve many by if used for ple, in medical i 1mag|ng [Akrout

et al., 2023] or education [Peres et al., 2023] '.hey also have the potenual to be misused and erode trust in d:gllal
mcdla Deepfakes have already been used in disinformation campaigns [Boneh et al., 2019] and social engineering
attacks [Mirsky and Lee, 2021], highlighting the need for methods that control the misuse of deep image generators.

‘Watermarking offers a solution to controlling misuse by embedding hidden into all g d images that are
later detectable using a secret watermarking key. Images that are detected as deepfakes can be flagged by social media
platforms or news agencies, which can mitigate p ial harm [Grinb and Adomaitis, 2022]. Providers of large

image generators such as Google have announced the deployment of their own watermarking methods [Gowal and
Kohli, 2023] to enable the detection of deepfakes and promote the ethical use of their models.

A core security property of walcmmrhng is robustness, which states that an attacker can evade detection only by
substantially degrading the image’s quality. While several have been p for image
generators [Wen et al., 2023, Zhao et al., 2023, Fernandez et al., 2023], none of them are certifiably robusl [Bansal et al.,
2022] and instead, mbusmess is tested ernplncally using a limited set of known attacks. Claimed security properties of
previous watermarking methods have been broken by novel attacks [Lukas et al., 2022], and no comprehensive method
exists to validate robustness, which causes difficulty in trusting the deployment of watermarking in practice.

‘We propose testing the robustness of watermarking by defining using objective function and

adaptive attacks as an optimization problem. Adaptive attacks are specific to the watermarking algorithm used by lhe
defender but have no access to the secret watermarking key. Knowledge of the watermarking algorithm enables the
attacker to consider a range of mrmgale keys similar to the defender’s key. This is also a challenge for optimization
since the attacker only has i ion about the optimization problem. Adaptive attackers had previously

Under

|
|

|
|
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How ROBUST IS WATERMARKING FOR DEEP IMAGE
GENERATORS AGAINST ADAPTIVE ATTACKERS?

Anonymous authors
Paper under double-blind review

ABSTRACT

Watermarking can control the potential misuse of deep image generators by
ing generated content detectable through a secret watermark. Robustness is a
core security property of watermarking, which states that an attacker cannot evade
detection unless substantially degrading the image’s quality, which also prevents
misuse. We test the robustness of two watermarking methods with a Stable Dif-
fusion v2 generator containing around one billion parameters. We show that an
adaptive attacker who (i) knows the watermarking algorithm (but not the secret
watermarking key) and (ii) controls a less capable generator with around 100 mil-
lion parameters can evade any watermark at almost no quality degradation. Our
attacks substantially outperform existing, non-adaptive attacks and undermine the
trustworthiness of existing watermarking methods against adaptive attackers.

1 INTRODUCTION

Deepfakes are synthetic images generated using deep image generators with the purpose of being

ptively realistic. While can have many positive societal impacts if used ethically, for
example, in sucnlmc research or education , they have also been scrutinized for their potential to be
misused . Deepfakes that are hard to distinguish from real images can lead to an erosion of trust in
digital media . For example, deepfakes have been used in disinformation campaigns , impersonation
attacks , or to create non-consensual images of individuals . These threats highlight the need to
control the misuse of deepfakes

Watermarking is a potential solution to lling misuse by a hidden k into

any generated image that is later extractable using a secret watermarking key . A core security prop-
erty of watermarking is robustness , which states that an attacker cannot evade watermark detection
without also substantially degrading the image quality. Existing watermarking methods for diffu-
sion models claim robustness but have only validated their attacks against a relatively small set of
attacks. Crucially, their robustness has not been tested against adaptive attackers, who know the wa-
termarking algorithm, but not the watermarking secret key. Related work has shown that adaptive
attackers can remove any watermark for image classifiers.

Our attacks work in three steps. In the first step, our attacker locally generates a diverse set of
watermarked images using a less capable image generator (e.g., a publicly available Stable Diffu-
sion v1 generator]). Each image is g d using a different, randomly sampled
watermarking message. In the second step, our attacker trains a deep neural network to predict the
secret message for any watermarked image. After t ing, the attacker can backpropagate gradients
through this surrogate watermarking key. In the final step, our attacker learns an image-to-image
model that generates an adversarial perturbation on the image which evades detection from the sur-
rogate watermarking key. The idea of our attack is to generate the minimal perturbation necessary
that (i) evades detection while (ii) preserving image quality.

Our key contributions are summarized as follows. We propose ..

* A rigorous threat model for adaptive attacks against image generator watermarking for
diffusion models.
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A golden luxury motorcycle parked at the
King's palace. 35mm f/4.5.

S imagen

Sprouts in the shape of text ‘Imagen’ coming out of a A photo of a Shiba Inu dog with a backpack riding a A high contrast portrait of a very happy fuzzy panda
bike. It is wearing sunglasses and a beach hat. dressed as a chef in a high end kitchen making dough.
There is a painting of flowers on the wall behind him.

fairytale book.

e

a cute magic;i flying maltipoo at light
speed, fantasy concept art, bokeh, wide sky

A portrait of a human growing colorful
Intricate details.

- —_— .-.: !:f?e";

Teddy bears swimming at the Olympics 400m Butter- A cute corgi lives in a house made out of sushi. A cute sloth holding a small treasure chest. A bright
golden glow is coming from the chest.

fly event.

A painting of a majestic royal
tall ship in Age of Discovery.

Eiffel Tower, landscape
photography

a blue Porsche 356 parked in
front of a yellow brick wall.

A living room with a fireplace at
a wood cabin. Interior design.

low poly bunny with cute eyes A cube made of denim on a wooden
table

Isometric underwater Atlantis city A hot air balloon in shape of a
with a Greek temple in a bubble. heart. Grand Canyon

A strawberry mug filled with white sesame seeds. The
Figure 1. Our model, GigaGAN, shows GAN frameworks can also be scaled up for general text-to-image synthesis tasks, generating a
512px output at an interactive speed of 0.13s, and 4096px at 3.7s. Selected examples at 2K or 4K resolutions are shown. Please zoom

A brain riding a rocketship heading towards the moon. A dragon fruit wearing karate belt in the snow.
mug is floating in a dark chocolate sea.
in for more details. See Appendix C and our website for more uncurated comparisons.

Figure 1: Select 1024 x 1024 Imagen samples for various text inputs. We only include photorealistic
images in this figure and leave artistic content to the Appendix, since generating photorealistic images
is more challenging from a technical point of view. Figs. A.1 to A.3 show more samples.

Imagen, Saharia et al, 2022 [/] GigaGAN, Kang et al, 2023 [ 8]
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It looks like this request may not follow our
content policy.

|.No (open) release of the model

® .. Staged (open) release

@® 5. Full (closed) release / Query Monitoring

OpenAl, Content Moderation

OpenAl retains API data for 30 days for abuse and misuse monitoring purposes. A limited number of authorized
OpenAl employees, as well as specialized third-party contractors that are subject to confidentiality and security
obligations, can access this data solely to investigate and verify suspected abuse. OpenAl may still have content
classifiers flag when data is suspected to contain platform abuse. Data submitted by the user through the Files
endpoint, for instance to fine-tune a model, is retained until the user deletes the file.

OpenAl, Data Usage Policy
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Think Twice Before Detecting GAN-generated Fake Images
from their Spectral Domain Imprints

Chengdong Dong! Ajay Kumar

! Eryun Liu?

! Department of Computing, The Hong Kong Polytechnic University, Hong Kong
% College of Information Science and Electronic Engineering, Zhejiang University
chengdong.dong@connect.polyu.hk, ajay.kumar@polyu.edu.hk, eryunliu@zju.edu.cn

Abstract

Accurate detection of the fake but photorealistic images
is one of the most challenging tasks to address social, bio-
metrics security and privacy related concerns in our com-
munity. Earlier research has underlined the existence of
spectral domain artifacts in fake images generated by pow-
erful generative adversarial network (GAN) based meth-
ods. Therefore, a number of highly accurate frequency do-
main methods to detect such GAN generated images have
been proposed in the literature. Our study in this paper in-
troduces a pipeline to mitigate the spectral artifacts. We
show from our experiments that the artifacts in frequency
spectrum of such fake images can be mitigated by proposed
methods, which leads to the sharp decrease of performance
of spectrum-based detectors. This paper also presents ex-
perimental results using a large database of images that are
synthesized using BigGAN, CRN, CycleGAN, IMLE, Pro-
GAN, StarGAN, StyleGAN and StyleGAN?2 (including syn-
thesized high resolution fingerprint images) to illustrate ef-
fectiveness of the proposed methods. Furthermore, we se-
lect a spatial-domain based fake image detector and ob-
serve a notable decrease in the detection performance when
proposed method is incorporated. In summary, our insight-
ful analysis and pipeline presented in this paper cautions
the forensic community on the reliability of GAN-generated
fake image detectors that are based on the analysis of fre-
quency artifacts as these artifacts can be easily mitigated.

1. Introduction

GAN-based methods can achieve state-of-the-art perfor-
mance for several computer vision related tasks. They have
shown great ability to generate images which do not exist
in the real world [8, 32, 38], transfer the style of images
[14,25,42] and translate text to image [16,39]. Consider-
ing the latent risk associated with the misuse of these fake

but real-looklike images, several methods have been pro-
posed to detect such GAN-generated images. Spatial do-
main methods [36,40,41,44] that directly train large neu-
ral network-based detectors have shown to perform well.
More recently such fake image detectors based on the arti-
facts in frequency spectrum of GAN-generated images have
been proposed. These detectors require less parameters as
compared with the spatial-domain based detectors, and have
shown better performance.

Spectrum-based Fake
Real/Fake Detector| ~Image
Spectrum-based
Real/Fake Detector

Figure 1. Detectors based on the artifacts in frequency spectrum of
GAN-generated images show good performance in recent works.
However, these detectors can be compromised when the GAN-
generated images are further subjected to our proposed methods.

Rea
Image

Fake Fake+

The main reason for the success of these methods is that
the anomalies in the frequency domain representation of
GAN-generated images are more pronounced and therefore
easy to detect. These anomalies in the spectrum of GAN-
generated images can be categorized into two types: abnor-
mal spectral patterns and discrepancy in their power distri-
bution. Some abnormal patterns such as dots and lines are
more frequent in the spectra of images generated by Cy-
cleGAN [47], StarGAN [13], and StyleGAN [27]. In fre-
quency spectra of BigGAN [10] generated images, cloud-
like blurry regions in high-frequency part of spectra are
more likely to be observed. In the spectra of synthetic im-
ages generated by CRN [12], IMLE [31], ProGAN [26] and
StyleGAN2 [28], the artifact patterns have been observed
in distinguishing latent shapes. Zhang et al. [45] use spec-
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Watermark Verification
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Latent Diffusion Models (LDMSs)
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TRWV - Effectiveness and Robustness
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Instantiating Adaptive Attacks
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Optimization Goal

Not necessarily
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Optimization Goal
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Simple solution to make VERIFY differentiable ..

Train a deep classifier to extract the message
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Observation: In existing methods, KeyGen is not (sufficiently) randomized

Using a single surrogate key gives us a good approximation already
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Instantiating Adaptive Attacks

Algorithm 2 Adversarial Noising Algorithm 3 Adversarial Compression
Require: surrogate 0, budget ¢, image | Require: surrogate ., strength «, image
1: 640 A > adversarial perturbation 1: 04 < [0g, 0p] > Compressor parameters
2: Op < GKEYGEN(Az) )
3: m < EXTRACT(z; Op) 2: Op < GKEYGEN (0c) > surrogate key
4: for j + 1to N do 3: for j <~ 1to N do
5:  m' < EXTRACT(z + 0.4,6p) 4: m ~ M A
6: go 4 —VQAHm—m’Hl S: 95 < EMBED(Hg,OD,m)
7. 04+« P.(04 — Adam(0.4, go,)) 6: 1z + GENERATE(6})
return z + 6 4 7: x D(g(aj, GA)) > compression
8: m' <~ EXTRACT(z',0p)
9: 9o, < Vs(Lrpwps(z', ) — allm —m/||1)
10: 04 < 04 — Adam(6 4,90 ,)

return D(E(x;0.4))

Less than | million parameters Around 80 million parameters
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Accuracy (TPR@1%FPR)

Instantiating Adaptive Attacks
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Instantiating Adaptive Attacks

Ablation over the Repetitions for Adversarial Compression
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Visual Inspection

TRW: “Cars are parked on the street near an old building”
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Can we defend against Adaptive Attackers?

Not necessarily
differentiable! Surrogate key
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Can we defend against Adaptive Attackers?

Problem

TRWV Is not easily fixable against these adaptive attacks
Possible Solutions

able watermarks, In which we train encoder-decoder palrs
But how can we design them!?
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Can we defend against Adaptive Attackers?

l[dea |: Post-processing

Update auto encoder
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HG E D & D > p=0.21
1 1 Adaptive |

Generate Post-process Attack Verity

Problem: Is the space of possible defense strategies large enough!?
There may not be an (efficient) solution!
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Can we defend against Adaptive Attackers?
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LEVERAGING OPTIMIZATION FOR ADAPTIVE ATTACKS ON
IMAGE WATERMARKS

Nils Lukas, Abdulrahman Diaa, Lucas Fenaux, Florian Kerschbaum
University of Waterloo, Canada
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ABSTRACT

Untrustworthy users can misuse image generators to synthesize high-quality deepfakes and engage in
online spam or disinformation campaigns. Watermarking deters misuse by marking generated content
with a hidden message, enabling its detection using a secret watermarking key. A core security
property of watermarking is robustness, which states that an attacker can only evade detection by
substantially degrading image quality. Assessing robustness requires designing an adaptive attack for
the specific watermarking algorithm. A challenge when evaluating watermarking algorithms and their
(adaptive) attacks is to determine whether an adaptive attack is optimal, i.e., it is the best possible
attack. We solve this problem by defining an objective function and then approach adaptive attacks as
an optimization problem. The core idea of our adaptive attacks is to replicate secret watermarking
keys locally by creating surrogate keys that are differentiable and can be used to optimize the attack’s
parameters. We demonstrate for Stable Diffusion models that such an attacker can break all five
surveyed watermarking methods at negligible degradation in image quality. These findings emphasize
the need for more rigorous robustness testing against adaptive, learnable attackers.

Keywords Watermarking, Stable Diffusion, Robustness, Adaptive Attacks

1 Introduction

Deepfakes are images synthesized using deep image generators that can be difficult to distinguish from real images.

While deepfakes can serve many beneficial purposes if used ethically, for example, in medical imaging [Akrout
et al., 2023] or education [Peres et al., 2023] they also have the potential to be misused and erode trust in digital
media. Deepfakes have already been used in disinformation campaigns [Boneh et al., 2019] and social engineering
attacks [Mirsky and Lee, 2021], highlighting the need for methods that control the misuse of deep image generators.

Watermarking offers a solution to controlling misuse by embedding hidden messages into all generated images that are
later detectable using a secret watermarking key. Images that are detected as deepfakes can be flagged by social media
platforms or news agencies, which can mitigate potential harm [Grinbaum and Adomaitis, 2022]. Providers of large
image generators such as Google have announced the deployment of their own watermarking methods [Gowal and
Kohli, 2023] to enable the detection of deepfakes and promote the ethical use of their models.

A core security property of watermarking is robustness, which states that an attacker can evade detection only by
substantially degrading the image’s quality. While several watermarking methods have been proposed for image

generators [Wen et al., 2023, Zhao et al., 2023, Fernandez et al., 2023], none of them are certifiably robust [Bansal et al.,

2022] and instead, robustness is tested empirically using a limited set of known attacks. Claimed security properties of
previous watermarking methods have been broken by novel attacks [Lukas et al., 2022], and no comprehensive method
exists to validate robustness, which causes difficulty in trusting the deployment of watermarking in practice.

We propose testing the robustness of watermarking by defining robustness using objective function and approaching
adaptive attacks as an optimization problem. Adaptive attacks are specific to the watermarking algorithm used by the
defender but have no access to the secret watermarking key. Knowledge of the watermarking algorithm enables the
attacker to consider a range of surrogate keys similar to the defender’s key. This is also a challenge for optimization
since the attacker only has imperfect information about the optimization problem. Adaptive attackers had previously

Leveraging Optimization for Adaptive Attacks on Image Watermarks
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Figure 1: An overview of our adaptive attack pipeline. The attacker prepares their attack by generating a surrogate key
and leveraging optimization to find optimal attack parameters # 4 (illustrated here as an encoder £ and decoder D) for
any message. Then, the attacker generates watermarked images and applies a modification using their optimized attack
to evade detection. The attacker succeeds if the verification procedure cannot detect the watermark in high-quality
images.

been shown to break the robustness of watermarking for image classifiers [Lukas et al., 2022], but attacks had to be
handcrafted against each watermarking method. Finding attack parameters through an optimization process can be
challenging when the watermarking method is not easily optimizable, for instance, when it is not differentiable. Our
attacks leverage optimization by approximating watermark verification through a differentiable process. We show that
adaptive, learnable attackers, whose parameters can be optimized efficiently, can evade watermark detection for 1
billion parameter Stable Diffusion models at a negligible degradation in image quality.

2 Background

Latent Diffusion Models (LDMs) are state-of-the-art generative models for image synthesis [Rombach et al., 2022].

Compared to Diffusion Models [Sohl-Dickstein et al., 2015], LDMs operate in a latent space using fixed, pre-trained
autoencoder consisting of an image encoder £ and a decoder D. LDMs use a forward and reverse diffusion process
across T steps. In the forward pass, real data point z is encoded into a latent point zy = £(z) and is progressively
corrupted into noise via Gaussian perturbations. Specifically,

q(Z¢|Z¢_1) = J\" (Z(Z VvV 1-— 3121_1, fjgl) ., te {0, .l, e, T — 1},
where j; is the scheduled variance. In the reverse process, a neural network fy guides the denoising, taking 2, and
time-step ¢ as inputs to predict 2, as fg(x,,t). The model is trained to minimize the mean squared error between the
s b . - e - L . oo 2. o o o oLl o Lot o b Sod o ales lhcsisin

Extended Evaluation

is later
medium

used by the defender to verify the presence of the hidden signal.Whilc-box and black-box watermarking methods
assume access to the model’s parameters or query access via an API respectively, and have been used primarily for
Intellectual Property protection [Uchida et al., 2017].

Detalled Algorithmic Descriptions

Discussion & Ethics
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Watermark Accuracy versus Perceptual Distance
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Figure 2: The effectiveness of our attacks against all watermarks. We highlight the Pareto front for each watermarking
method by dashed lines and indicate adaptive/non-adaptive attacks by colors.
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Figure 3: A visual analysis of two adaptive attacks. The left image shows the unwatermarked output, including a
high-contrast cutout of the top left corner of the image to visualize noise artifacts. On the right are images after evasion
with adversarial noising (top) and adversarial compression (bottom).

5.2 Image Quality after an Attack

Figure 3 shows the perceptual quality after using our adaptive attacks. We show a cutout of the top left image patch
with high contrasts on the bottom right to visualize noise artifacts potentially introduced by our attacks. We observe
that, unlike adversarial noising, the compression attack introduces no new visible artifacts. Appendix A.3 displays more
visualizations on the perceptual impact of our attacks on the image quality.

TRW WDM DWT DWT-SVD RivaGAN
FID CLIP FID CLIP FID CLIP FID CLIP FID CLIP

NoWM 2332 31.76 2348 31.77 2348 31.77 2348 31.77 2348 3177

WM 2419 3178 2343 31.72 23.16 3211 23.10 3215 2296 31.84

A-Noise 23.67 3215 N/A N/A 2355 3246 2289 3250 N/A NA

A-Comp 2436 31.87 2327 3201 2316 3217 23.06 3192 2325 31.86
Table 2: Quality metrics before and after watermark evasion. FID/, represents the Fréchet Inception Distance, and
CLIP1 represents the CLIP score, computed on 5k images from MS-COCO-2017. N/A means the attack could not
evade watermark detection, and we do not report quality measures.

Table 2 shows the FID and CLIP score of the watermarked images and the images after using adversarial noising and
adversarial compression. We calculate the quality using the best attack configuration from Figure 2 when the detection
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PTW: Pivotal Tuning Watermarking for Pre-Trained Image Generators

Nils Lukas
University of Waterloo

Abstract

Deepfakes refer to content synthesized using deep genera-
tors, which, when misused, have the potential to erode trust in
digital media. Synthesizing high-quality deepfakes requires
access to large and complex generators only a few entities can
train and provide. The threat is malicious users that exploit
access to the provided model and generate harmful deepfakes
without risking detection. Watermarking makes deepfakes de-
tectable by embedding an identifiable code into the generator
that is later extractable from its generated images. We propose
Pivotal Tuning Watermarking (PTW), a method for water-
marking pre-trained generators (i) three orders of magnitude
faster than watermarking from scratch and (ii) without the
need for any training data. We improve existing watermark-
ing methods and scale to generators 4 x larger than related
work. PTW can embed longer codes than existing methods
while better preserving the generator’s image quality. We
propose rigorous, game-based definitions for robustness and
undetectability and our study reveals that watermarking is
not robust against an adaptive white-box attacker who has
control over the generator’s parameters. We propose an adap-
tive attack that can successfully remove any watermarking
with access to only 200 non-watermarked images. Our work
challenges the trustworthiness of watermarking for deepfake
detection when the parameters of a generator are available.

1 Introduction

Deepfakes, a term used to describe synthetic media generated
using deep image generators have received widespread atten-
tion in recent years. While deepfakes offer many beneficial
use cases, for example in scientific research [9,48] or educa-
tion [16,39,47], they have also raised ethical concerns because
of their potential to be misused which can lead to an erosion
of trust in digital media. Deepfakes have been scrutinized for
their use in disinformation campaigns [2,23], impersonation
attacks [15, 35] or when used to create non-consensual media
of an individual violating their privacy [10,20]. These threats
highlight the need to control the misuse of deepfakes.

Florian Kerschbaum
University of Waterloo

While some deepfakes can be created using traditional
computer graphics, using deep learning methods such as the
Generative Adversarial Network (GAN) [19] can reduce the
time and effort needed to create deepfakes. However, training
GANSs requires a significant investment in terms of computa-
tional resources [26] and data preparation, including collec-
tion, organization, and cleaning. These costs make training
image generators a prohibitive endeavor for many. As a con-
sequence, generators are often trained by one provider and
made available to many users through Machine-Learning-
as-a-Service [6]. The provider wants to disclose their model
responsibly and deter model misuse, which is the unethical use
of their model to generate harmful or misleading content [36].

Problem. Consider a provider who wants to make their
image generator publicly accessible under a contractual usage
agreement that serves to prevent misuse of the model. The
threat is a user who breaks this agreement and uses the gener-
ator to synthesize and distribute harmful deepfakes without
detection. To mitigate this threat in practice, companies such
as OpenAl have deployed invasive prevention measures by
providing only monitored access to their models through a
black-box API. Users that synthesize deepfakes are detectable
when they break the usage agreement if the provider matches
the deepfake with their database. This helps 1
the model, but it can also lead to a lack of
limit researchers and individuals from usi
ogy [12,50]. For example, query monitorin
in practice by companies such as OpenAl rz
cerns as it involves collecting and potentially
information about the user’s queries. A bette
be to implement methods that deter model mi
need for query monitoring.

A potential solution is to rely on deepfake 0 i
ods [7,13,17,24,25,30,40,56]. The idea guiding such passive
methods is to exploit artifacts in the synthetic images that
separate fake and real content. While these detectors protect
well against some deepfakes it has been demonstrated that

$To appear at USENIX Security 2023.

FFHQ-256 FFHQ-1024 AFHQv2

StyleGAN2

StyleGAN3

No Data

StyleGAN-XL

Original Marked Difference Original Marked Difference Original Marked Difference

Figure 5: Images synthesized using our watermarked generators on different datasets and model architectures. We show the
image synthesized by the generator (i) before and (ii) after watermarking, and (iii) the difference between the watermarked and
non-watermarked images. StyleGAN-XL does not provide a pre-trained model checkpoint for AFHQv2.

Capacity. We measure the capacity of a watermark in bits Model StyleGAN2  StyleGAN3  StyleGAN-XL
by the difference in the expected number of correctly ex- FFHQ-256 158h 482h 552h
tracted bits from watermarked and non-watermarked images. FFHQ-512 384h 662h 1285h
The expected rate of correctly extracted bits equals 0.5 for FFHQ-1024 929h 1161h 1456h

non-watermarked images assuming messages are sampled
uniformly at random. Let m € {0, 1}" be a message, T the se-
cret watermarking key, and 0 are the parameters of a generator.
The capacity of the generator is computed as follows.

Table 2: GPU hours required for training generators without
watermarking from scratch on FFHQ [27] on 8xA100 GPUs.

scratch
It is straightf
ing a signifi .
approach als }th PTW,

Decision Threshold. We consider a watermark to be re-
moved, if we can reject the null hypothesis Hy with a p-value

Detailed Algorithmic descriptions

: f_or all methods

ing methods [60,61], we compare it with training non-
watermarked generators from scratch. This comparison is

termarking, the image synthesized after watermarking and
their differences in the form of a heatmap. Heavily modified
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Figure 8: This Figure shows the robustness of our water-
mark against all surveyed attacks. We highlight black-box
and white-box attacks that are members of the Pareto front.

off a black-box attacker can achieve using these attacks. For
example, a black-box attacker can reduce the capacity by 10
bits from 50 to 40, but in doing so reduces the FID by over 6
points. Our super-resolution attack is on the Pareto front but
cannot remove the watermark. Removal is only possible when
the FID drops to 30, at which point the image quality has been
compromised. Table 3 summarizes the best-performing black-
box attacks for the three evaluated generator architectures.
Each attack has a single parameter that we ablate over using
grid search. We refer to Appendix A for a detailed description
of all attacks and parameters we used in this ablation. Table 3
lists those data points that either remove the watermark (Cy <
5) or, if the watermark cannot be removed, the data point
with the lowest FID. None of the black-box attacks, including
our super-resolution attack, are successful in removing the
watermark while preserving the generator’s utility.

5.6.2 White-box Attacks

Overwriting. Table 3 shows that overwriting can remove wa-
termarks but deteriorates the generator’s image quality, mea-
sured using FID, by approximately 3 points for StyleGAN2
and 6 points for StyleGAN-XL. Such a deterioration in FID
likely prevents attacks in practice because low-quality deep-
fakes are more easily detectable. Our overwriting attack also
implicitly assumes knowledge of the defender’s watermarking
method which may not be the case in practice. Overwriting
could cause a greater decline in FID if the attacker’s and
defender’s watermarking methods differ.

Reverse Pivotal Tuning. Our Reverse Pivotal Tuning
(RPT) attack is substantially more effective than the over-
writing attack as it preserves the FID of the generator to a
greater extent. We found that an attacker with access to 200

StyletGAN2  StyleGAN-XL  StyleGAN3

C¢ FID Cy FID Cy FID
Attacks  43.05 54 4879 267 4033 6.6l

Black-box Attacks
Crop 3973 872 4271 6.18 3823 8.69
Blur 38.82 36.84 12.12 1032 35.12 11.73
JPEG 42.12 870 3843 9.12 3823 9.33
Noise 40.26 829 4517 735 3229 10.73
Quantize 37.17 11.60 4327 561 39072 8.71
SR 32.86 11.51 3452 11.62 30.12 11.34

White-box Attacks
Overwrite  4.78 8.34 491 8.83 4.73 9.71
RPT300 491 547 4.52 3.52 4.59 6.65
RPT g0 4.44 5.56 421 3.90 447 6.75
RPT5 4.38 8.07 4.38 1532 416 1447

Table 3: The capacity and FID of all surveyed attacks. We
ablate over multiple parameters for each attack and this table
shows the points with the best (i.e., lowest) FID. RPTg stands
for the Reverse Pivotal Tuning attack using R real samples.

real, non-watermarked images is capable of removing any
watermark without causing a noticeable deterioration in FID.
This means that with access to less than 0.3% of the training
dataset, a white-box adversary can remove any watermark.
In the case of StyleGAN-XL, using 200 images leads to a
decrease in FID of less than one point (from 2.67 to 3.52).

Ablation Study for RPT. Figure 7c shows an ablation
study over the amount of real, non-watermarked training data
required by an attacker to remove a watermark. We mea-
sured these curves as follows: We randomly sample a set of R
real images and run the RPT attack encoded by Algorithm 5
with gradually increasing weight Appips on the LPIPS loss
until the watermark is removed. Then we compute the FID
on K = 50,000 images. In all experiments, the watermark
is eventually removed but access to more data has a signifi-
cant impact on the FID that is retained in the generator after
the attack. For StyleGAN2, we find that 80 images (=~ 0.1%
of the training data) are sufficient to remove the watermark
at less than 0.3 points of deterioration in FID, which repre-
sents a visually imperceptible quality degradation. Our results
demonstrate that an adaptive attacker with access to the gen-
erator’s parameters can remove any watermark using only
a small number of clean, non-watermarked images and can
pose a threat to the trustworthiness of watermarking.

6 Discussion

This section discusses the limitations of watermarking and
our study, the extension of our work to other image generators,
and ethical considerations from releasing our attacks.
Non-Cooperative Providers. Our study demonstrates that
watermarking for image generators can be robust under cer-
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Detectabllity
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Detection Accuracy versus Truncation
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Reverse Pivotal funing

White-b - | ’
HeTox 1) Invert real images into the generator's latent space

2) Regularize generator with Pivotal Tuning and LPIPS loss to synthesize real images
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Fréchet Inception Distance (FID)

Robustness

Capacity/Utility Trade-off for Robustness
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Summary of Results

Black-box VWhite-box

Robustness v x

Detectability Scales with output diversity

Effectiveness 40 bits at less than 0.3 FID

Scalabilit No retraining,
clabllY < 2 GPU hours (FFHQ-256)

The first post-hoc learnable watermark for deep image generators
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