Nils Lukas

Assistant Professor • MBZUAI • Abu Dhabi, UAE nils.lukas@mbzuai.ac.ae • nilslukas.github.io

Updated on April 25, 2024

Research	Design safe and reliable Machine Learning systems in the presence of untrustworthy				
Interests	 Providers: Confidential computing via Homomorphic Encryption & Secret Sharing. Data: Mitigate data poisoning during training & prompt injection during inference. Models: Protect training data privacy through PII scrubbing & differential privacy. Users: Control misuse by detecting generated (mis)information with watermarking. 				
Education	University of Waterloo, Canada2019 -Ph.D. in Computer ScienceAdvisor: Florian KerschbaumThesis: Analyzing Threats of Large-Scale Machine Learning SystemsAwarded the Mathematics Doctoral Prize's Top Honour		2019 - 02/2024		
	RWTH-Aachen , Germany M.Sc. in Computer Science (<i>w</i> / <i>Distinction</i>) B.Sc. in Computer Science		2016 - 2018 10/2012 - 2016		
Honors & Awards	Best Poster Award Distinguished Con David R. Cheriton Outstanding Revie Best Poster Award KU Global Scholar	s Gold Medal, University of Waterloo [1500 CAD] I, Sponsored by David R. Cheriton [300 CAD] tribution Award, Microsoft MLADS conference Scholarship, University of Waterloo [20000 CAD] wer (Top 10%), ICML'22 I, Sponsored by Rogers [1000 CAD] ship, Korea University [1.2 million KRW] hip, RWTH-Aachen [3000 EUR]	2024 2023 2023 2022, 2023 2022 2019 2016 2014		
Conference Publications	[USENIX'24]	Fast and Private Inference of Deep Neural Networks by Co-designing Activation Functions Abdulrahman Diaa, Lucas Fenaux, Thomas Humphries, Marian Dietz, Faezeh Ebrahimianghazani, Bailey Kacsmar, Xinda Li, Nils Lukas , Rasoul Akhavan Mahdavi, Simon Oya, Ehsan Amjadian, Florian Kerschbaum. In the 33rd USENIX Security Symposium, 2024.			
	[ICLR'24] AR: 30.8% (2250/7262)	Leveraging Optimization for Adaptive Attacks on Image Watermarks Nils Lukas, Abdulrahman Diaa, Lucas Fenaux, Florian Kerschbaum. In the Twelfth International Conference on Learning Representations, 2024.			
	[ICLR'24] AR: 30.8% (2250/7262) Media Coverage	Universal Backdoor Attacks Benjamin Schneider, Nils Lukas , Florian Kerschbaum. In the Twelfth International Conference on Learning Representations, 2024.			
	[USENIX'23] AR: 29.2% (422/1444)	PTW: Pivotal Tuning Watermarking for Pre-Trained Image Generators Nils Lukas and Florian Kerschbaum. In the 32nd USENIX Security Symposium, 2023.			
	[S&P'23] AR: 17.0% (195/1147) ♥ Distinguished Contribution Award at Microsoft MLADS	alyzing Leakage of Personally Identifiable Information in Language odels Is Lukas, Ahmed Salem, Robert Sim, Shruti Tople, Lukas Wutschitz, ntiago Zanella-Béguelin. In the 44th IEEE Symposium on Security and ivacy, 2023.			
	[S&P'22] AR: 14.5% (147/1012)	SoK: How Robust is Image Classification Deep Neur marking? Nils Lukas, Edward Jiang, Xinda Li, Florian Kersch IEEE Symposium on Security and Privacy, 2022.			
	[ICLR'21] AR: 28.7% (860/2997) ♥ Spotlight (Top 5%)	Deep Neural Network Fingerprinting by Conferrable A Nils Lukas, Yuxuan Zhang, Florian Kerschbaum. The Conference on Learning Representations, 2021.			

	[IH&MMSEC'21]	On the Robustness of Backdoor-based Watermarking	; in Deep Neural
	AR: 40.3% (128/318)	Networks Masoumeh Shafieinejad, Nils Lukas, Jiaqi Wang, X Kerschbaum. Proceedings of the 2021 ACM Worksho Hiding and Multimedia Security, 2021.	
	[ACSAC'20] AR: 20.9% (104/497)	Practical Over-Threshold Multi-Party Private Set Inters Rasoul Mahdavi, Thomas Humphries, Bailey Kacsma nikov, Nils Lukas , John Premkumar, Masoumeh Shi Oya, Florian Kerschbaum, Erik-Oliver Blass. Annual C Applications Conference (ACSAC), 2020.	r, Simeon Krast- afieinejad, Simon
	[EuroS&P'20] AR: 20.9% (39/187)	Differentially Private Two-Party Set Operations Bailey Kacsmar, Basit Khurram, Nils Lukas , Al Masoumeh Shafieinejad, Zhiwei Shang, Yaser Baseri, Simon Oya, Florian Kerschbaum. IEEE European Symp and Privacy (EuroS&P), 2020.	Maryam Sepehri,
Journal Publications	[AIP'18]	SunFlower: A new Solar Tower Simulation Method for use in Field Layout Optimization, Pascal Richter, Gregor Heiming, Nils Lukas , Martin Frank. AIP Conference Proceedings, Volume 2033, Issue 1, 2018.	
Working Papers		Pick your Poison: Undetectability versus Robustness in Data Poisoning Attacks against Deep Image Classifiers Nils Lukas and Florian Kerschbaum.	
		PEPSI: Practically Efficient Private Set Intersection in Setting	the Unbalanced
		Rasoul Mahdavi, Nils Lukas , Faezeh Ebrahimiang Humphries, Bailey Kacsmar, John Premkumar, Xinda Ehsan Amjadian, Florian Kerschbaum.	
Work Experience	Visiting Scholar, N	or, MBZUAI, Abu Dhabi, UAE MBZUAI, Abu Dhabi, UAE	from 08/2024 2024
	 Hosted by Prof. Kun Zhang Research Intern, Royal Bank of Canada, Borealis AI, Toronto 		
	Research Intern, N	ated Learning, hosted by Kevin Wilson Aicrosoft Research, Cambridge, UK	2022
	-	nguage Models, hosted by Shruti Tople & Lukas Wutschitz t, RWTH-Aachen, Aachen	2014 - 2018
		er, DSA Daten- und Systemtechnik GmbH, Aachen • Intern, A.R. Bayer DSP Systeme GmbH, Düsseldorf	2016 2012
Teaching		t , University of Waterloo omputer Security and Privacy	2020, 2021
		t Oriented Programming	2021
	Course: Data-o		2018
Research Talks		e of Personal Information in Language Models 65, hosted by Robert Sim	2024
ιαικο	 Meta, hosted 	by Will Bullock	2023
	How Reliable is W	osted by Marilyn George and Archita Agarwal /atermarking for Image Generators?	2023
		d by Somesh Jha California, Berkely, hosted by Dawn Song	2023 2023

Service	Program Committee				
	 IEEE Symposium on Security and Privacy (S&P) Recent Advances in Intrusion Detection (RAID) 	2025 2024			
	Artifact Evaluation Committee				
	 The ACM Conference on Computer and Communications Security (CCS) 	2023, 2024			
	Reviewer				
	 International Conference on Learning Representations (ICLR) International World Wide Web Conference (TheWebConf) Recent Advances in Intrusion Detection (RAID) Neural Information Processing Systems (NeurIPS) International Conference on Machine Learning (ICML) The Conference on Information and Knowledge Management (CIKM) 	2024 2024 2023 2022, 2023 2022 2020			
	Other				
	 Sub-Reviewer, Proceedings on Privacy Enhancing Technologies (PETS) Session Chair, IEEE Symposium on Security and Privacy (S&P) Organizing Hackathon, Workshop on Semantic Web Solutions for Large-Scale Biomedical Data Analytics (SeWeBMeDA) 	2021, 2022, 2023 2023 2018			
	Student Board Member, Cybersecurity and Privacy Institute School Advisory Committee on Appointments Liaison, CrySP Lab	2022, 2023, 2024 2022			