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Privacy Concerns in ChatBots
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Privacy | hreats

2.7 Privacy

GPT-4 has learned from a variety of licensed, created, and publicly available data sources, which may
include publicly available personal information. [58, 59] As a result, our models may have knowledge
about people who have a significant presence on the public internet, such as celebrities and public
figures. GPT-4 can also synthesize multiple, distinct information types and perform multiple steps of
reasoning within a given completion. The model can complete multiple basic tasks that may relate
to personal and geographic information, such as determining the geographic locations associated
with a phone number or answering where an educational institution is located in one completion and
without browsing the internet. For example, the model can associate a Rutgers University email
address to a phone number with a New Jersey area code with high recall, and explain its reasoning
as being through that route. By combining capabilities on these types of tasks, GPT-4 has the
potential to be used to attempt to identify individuals when augmented with outside data.

GP1-4 Technical Report, 2023 [8]




Privacy Concerns for Code-Completion

10,000 AWS secret access keys carelessly left in code
uploaded to GitHub
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rew-Shot In Context Learning versus Fine- funing

- (Task Specific) Higher accuracy and better quality of responses

- (Improved Control) Examples shown to LM are not limited by context size
(Pricing & Speed) Shorter prompts can save tokens and reduce latency

(Stability) Less sensitive to query formatting issues

Cif o
Pre-Training: ~10m USD
Fine-Tuning: ~5-10k USD

PEFT: <1k USD

[12]
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Abstract
This paper describes a testing methodology for quantita-
tively assessing the risk that rare or unique training-data
are uni; ionall; ized by generative se-
quence models—a common type of machine-learning model.
Because such models are sometimes trained on sensitive data

For example, users may find that the input “my social-security
number is...” gets auto-completed to an obvious secret (such
as a valid-looking SSN not their own), or find that other in-
puts are auto-completed to text with oddly-specific details. So
triggered, unscrupulous or curious users may start to “attack”
such models by entering different input prefixes to try to mine

(e.g., the text of users’ private ), this methodol
can benefit privacy by allowing deep-learning practitioners to
select means of training that minimize such memorization.
In experiments, we show that unintended memorization is
a persistent, hard-to-avoid issue that can have serious conse-
quences. Specifically, for models trained without id

possibly t suffixes. Therefore, for generative text mod-
els, assessing and reducing the chances that secrets may be
disclosed in this manner is a key practical concern.

To enable practitioners to measure their models’ propensity
for disclosing details about private training data, this paper

tion of memorization, we describe new, efficient procedures
that can extract unique, secret sequences, such as credit card
numbers. We show that our testing strategy is a practical and
easy-to-use first line of defense, e.g., by describing its ap-
plication to quantitatively limit data exposure in Google’s
Smart Compose, a commercial text-completion neural net-
work trained on millions of users’ email messages.

1 Introduction

‘When a secret is shared, it can be very difficult to prevent its
further disclosure—as artfully explored in Joseph Conrad’s
The Secret Sharer [10]. This difficulty also arises in machine-
learning models based on neural networks, which are being
rapidly adopted for many purposes. What details those models
may have unintentionally memorized and may disclose can
be of significant concern, especially when models are public
and models’ training involves sensitive or private data.
Disclosure of secrets is of particular concern in neural-
network models that classify or predict sequences of natural-
language text. First, such text will often contain sensitive or
private sequences, accidentally, even if the text is supposedly
public. Second, such models are designed to learn text pat-
terns such as grammar, turns of phrase, and spelling, which

a ive metric of exposure. This metric can
be applied during training as part of a testing methodology
that empirically measures a model’s potential for unintended
memorization of unique or rare sequences in the training data.

Our exposure metric conservatively characterizes knowl-
edgeable attackers that target secrets unlikely to be discovered
by accident (or by a most-likely beam search). As validation
of this, we describe an algorithm guided by the exposure met-
ric that, given a pretrained model, can efficiently extract secret
sequences even when the model considers parts of them to be
highly unlikely. We demonstrate our algorithm’s effectiveness
in experiments, e.g., by extracting credit card numbers from a
language model trained on the Enron email data. Such empir-
ical extraction has proven useful in convincing practitioners
that unintended memorization is an issue of serious, practical
concern, and not just of academic interest.

Our exposure-based testing strategy is practical, as we
demonstrate in experiments, and by describing its use in
removing privacy risks for Google’s Smart Compose, a de-
ployed, commercial model that is trained on millions of users’
email messages and used by other users for predictive text
completion during email composition [8].

In evaluating our exposure metric, we find unintended mem-
orization to be both commonplace and hard to prevent. In

comprise a vanishing fraction of the ex ial space of
all possible sequences. Therefore, even if sensitive or pri-
vate training-data text is very rare, one should assume that
well-trained models have paid attention to its precise details.

Concretely, disclosure of secrets may arise naturally in gen-
erative text models like those used for text auto-completion
and predicti y , if trained on possibl itive data.
The users of such models may discover—either by accident
or on purpose—that entering certain text prefixes causes the
models to output surprisingly-revealing text completions [37].

lar, such memorization is not due to overtraining [47]:
it occurs early during training, and persists across different
types of models and training strategies—even when the mem-
orized data is very rare and the model size is much smaller
than the size of the training data corpus. Furthermore, we
show that simple, intuitive regularization approaches such
as early-stopping and dropout are insufficient to prevent un-
intended memorization. Only by using differentially-private
training techniques are we able to eliminate the issue com-
pletely, albeit at some loss in utility.

arXiv:2111.09509v1 [cs.CL] 18 Nov 2021
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Abstract

Current language models can generate high-
quality text. Are they simply copying text
they have seen before, or have they learned
K PR ions? o
tease apart these possibilities, we intro-
duce RAVEN, a suite of analyses for as-
sessing the novelty of generated text, fo-
cusing on sequential structure (n-grams)
and syntactic structure. We apply these
analyses to four neural language models
(an LSTM, a Transformer, Transformer-XL,
and GPT-2). For local structure—e.g., indi-
vidual dependencies—model-generated text
is substantially less novel than our base-
line of human-generated text from each
model’s test set. For larger-scale structure—
e.g., overall sentence structure—model-
generated text is as novel or even more
novel than the human-generated baseline,
but models still sometimes copy substan-
tially, in some cases duplicating passages
over 1,000 words long from the training set.
‘We also perform extensive manual analysis
showing that GPT-2’s novel text is usually
well-formed morphologically and syntacti-
cally but has reasonably frequent semantic
issues (e.g., being self-contradictory).

1 Introduction

How deep is deep learning? Are neural networks
“discovering intricate structures” that support so-
phisticated generalization (LeCun et al., 2015), or
are they “stochastic parrots” that simply memo-
rize seen examples and recombine them in shallow
ways (Bender et al., 2021)?

‘We focus on this question in the area of open-
ended text generation. Neural network language
models (LMs) can generate grammatical, coherent
text (See et al., 2019; Brown et al., 2020, section
3.9.4), but the text alone cannot tell us if it was

* Work partially done while at Microsoft Research.

constructed by the model or copied from the train-
ing set. We argue that it is important to disentangle
these possibilities. That is, in addition to evaluat-
ing the quality of generated text, as is already stan-
dard (Gatt and Krahmer, 2018; Celikyilmaz et al.,
2020), we should also evaluate its novelty.

Novelty is important for several reasons. From

a perspective, one core p of
knowing a language is the ability to combine fa-
miliar parts in novel ways (Chomsky, 1957; Hock-
ett, 1963). From a machine learning perspective,
models are meant to learn the training distribu-
tion, not just memorize the training set (Dietterich,
1995). Finally, on the more practical side, models
that copy training data might leak sensitive infor-
mation (Carlini et al., 2021) or repeat hate speech
(Bender et al., 2021).

In this work, to assess the novelty of gener-
ated text, we introduce a suite of analyses called
RAVEN (RAting VErbal Novelty).l'2 These anal-
yses cover both sequential structure (n-grams)
and syntactic structure. We apply these analy-
ses to text generated by an LSTM, a Transformer,
Transformer-XL, and all 4 sizes of GPT-2 (the
largest LM for which we had access to the training
data). Because there are many ways to generate
text from LMs, we test 12 generation methods and
4 prompt lengths. As a baseline, we also analyze
human-generated text from each model’s test set.

We find that models display novelty for all as-
pects of structure that we analyze: they gener-

'GitHub code will be released soon.

2Verbal here uses its broad definition of “linguistic” rather
than the narrow definition of “verb-related.” This acronym
refers to “The Raven" by Edgar Allan Poe, in which the narra-
tor a ious raven which cries out,
“Nevermore!" The narrator cannot tell if the raven is simply
repeating something that it heard a human say, or if it is con-
structing its own utterances (perhaps by combining never and
more)—the same basic ambiguity that our paper addresses.
This acronym s also a nod to Bender et al.’s (2021) compari-
son of LMs to another utterance-memorizing bird, the parrot.

ficCoy et al 20 |5
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Abstract

It has become common to publish large (billion parameter)
language models that have been trained on private datasets.
This paper demonstrates that in such settings, an adversary can
perform a training data extraction attack to recover individual
training examples by querying the language model.

We demonstrate our attack on GPT-2, a language model
trained on scrapes of the public Internet, and are able to extract
hundreds of verbatim text sequences from the model’s training

Prefix

East Stroudsburg Stroudsburg... ]

GPT-

data. These extracted examples include (public) p 11
identifiable information (names, phone numbers, and email
addresses), IRC conversations, code, and 128-bit UUIDs. Our
attack is possible even though each of the above sequences
are included in just one document in the training data.

‘We comprehensively evaluate our extraction attack to un-
derstand the factors that contribute to its success. Worryingly,
we find that larger models are more vulnerable than smaller
models. We conclude by drawing lessons and discussing pos-
sible safeguards for training large language models.

1 Introduction

Language models (LMs)—statistical models which assign a
probability to a seq of word: 1 to many
natural language processing tasks. Modern neural-network-
based LMs use very large model architectures (e.g., 175 bil-
lion parameters [7]) and train on massive datasets (e.g., nearly
a terabyte of English text [55]). This scaling increases the
ability of LMs to generate fluent natural language [53,74,76],
and also allows them to be applied to a plethora of other

Corporation Seabank Centre
Marine Parade Southport

Figure 1: Our extraction attack. Given query access to a
neural network language model, we extract an individual per-
son’s name, email address, phone number, fax number, and
physical address. The example in this figure shows informa-
tion that is all accurate so we redact it to protect privacy.

Such privacy leakage is typically associated with overfitting
[75]—when a model’s training error is significantly lower
than its test error—because overfitting often indicates that a
model has memorized examples from its training set. Indeed,
overfitting is a sufficient condition for privacy leakage [72]
and many attacks work by exploiting overfitting [65].

The association between overfitting and memorization has—

tasks [29,39,55], even without updating their [71.

At the same time, machine learning models are notorious
for exposing information about their (potentially private) train-
ing data—both in general [47,65] and in the specific case of
language models [8, 45]. For instance, for certain models it
is known that adversaries can apply membership inference
attacks [65] to predict whether or not any particular example
was in the training data.

ly—Iled many to assume that state-of-the-art LMs
will not leak information about their training data. Because
these models are often trained on massive de-duplicated
datasets only for a single epoch [7, 55], they exhibit little
to no overfitting [53]. Accordingly, the prevailing wisdom has
been that “the degree of copying with respect to any given
work is likely to be, at most, de minimis” [71] and that models
do not signi y memorize any i training example.

USENIX Association

30th USENIX Security Symposium 2633

Carlint et al, 2020
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ABSTRACT

Large language models (LMs) have been shown to memorize parts of their training
data, and when prompted appropriately, they will emit the memorized training data
verbatim. This is undesirable because memorization violates privacy (exposing
user data), degrades utility (repeated easy-to-memorize text is often low quality),
and hurts fairness (some texts are memorized over others).

‘We describe three log-linear relationships that quantify the degree to which LMs
emit memorized training data. Memorization significantly grows as we increase (1)
the capacity of a model, (2) the number of times an example has been duplicated,
and (3) the number of tokens of context used to prompt the model. Surprisingly,
we find the situation becomes more complicated when generalizing these results
across model families. On the whole, we find that memorization in LMs is more
prevalent than previously believed and will likely get worse as models continues to
scale, at least without active mitigations.

1 INTRODUCTION

The performance of neural language models has continuously improved as these models have grown
from millions to trillions of parameters (Fedus et al.| 2021), with their training sets similarly growing
from millions to trillions of tokens. In anticipation of future, even larger models trained on minimally
curated datasets, it is important to quantify factors that lead to increased memorization of a model’s
training set. Indeed, recent work has shown that training data extraction attacks are a practical threat
for current language models 2020); an adversary interacting with a pretrained model
can extract individual sequences that were used to train the model.

While current attacks are effective, they only represent a lower bound on how much memorization
occurs in existing models. For example, by querying the GPT-2 language model, Carlini et al. (2020)
(manually) identified just 600 memorized training examples out of a 40GB training dataset. This
attack establishes a (loose) lower bound that at least 0.00000015% of the dataset is memorized. In
contrast, we are able to show that the 6 billion GPT-J model (Black et al}[2021}[Wang and
[Komatsuzaki|2021) memorizes at least 1% of its training dataset: The Pile (Gao et al.,[2020).
In addition to prior work’s loose estimates of models’ memorization capabilities, there is a limited
understanding of how memorization varies across different neural language models and datasets
of different scales. Prior studies of memorization in 1 models either focus on models or
datasets of a fixed size (Carlini et al. [Zhang et al.| 2021} Thakkar et al.|[2020) or identify a
narrow memorizati It (Carlini et al.|[2020; [Lee et al.[[2021). While[McCoy]
[et_a}; (2021) broadly study the extent to which language models ize, their focus is on how to
avoid the problem and ensure novelty of model outputs, rather than on studying model risk through
identifying the maximal amount of data memorization.

* Authors ordered alphabetically.

Carlini et al., 2022
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Abstract

Are Large Pre-Trained Language Models
Leaking Your Personal Information? In this
paper, we analyze whether Pre-Trained Lan-
guage Models (PLMs) are prone to leaking
personal information. Specifically, we query
PLMs for email addresses with contexts of
the email address or prompts containing the
owner’s name. We find that PLMs do leak per-
sonal information due to memorization. How-
ever, since the models are weak at association,
the risk of specific personal information being
extracted by attackers is low. We hope this
work could help the community to better un-
derstand the privacy risk of PLMs and bring
new insights to make PLMs safe.!

1 Introduction

Pre-trained Language Models (PLMs) (Devlin
et al., 2019; Brown et al., 2020; Qiu et al., 2020)
have taken a significant leap in a wide range of
NLP tasks, attributing to the explosive growth of
parameters and training data. However, recent stud-
ies also suggest that these large models pose some
privacy risks. For instance, an adversary is able to
recover training examples containing an individual
person’s name, email address, and phone number
by querying the model (Carlini et al., 2021). This
may lead to privacy leakage if the model is trained
on a private corpus, in which case we want to im-
prove the performance with the data (Huang et al.,
2019). Even if the data is public, PLMs may change
the intended use, e.g., for information that we share
but do not expect to be disseminated.

Carlini et al. (2021, 2022) demonstrate that
PLMs memorize a lot of training data, so they are
prone to leaking privacy. However, if the memo-
rized information cannot be effectively extracted, it
is still difficult for the attacker to carry out effective
attacks. For instance, Lehman et al. (2021) attempt

!Code and data are available at https://github.com/
jeffhj/LM_PersonalInfolLeak. “Equal contribution.

s Google's BERT and

Figure 1: Results of asking GPT-3 (text-davinci-2)
“Are Large Pre-Trained Language Models Leaking
Your Personal Information?”

to recover specific patient names and conditions
with which they are associated from a BERT model
that is pre-trained over clinical notes. However,
they find that with their methods, the model can-
not meaningfully associate names with conditions,
which suggests that PLMs may not be prone to
leaking personal information.

Based on existing research, we are not sure
whether PLMs are safe enough in terms of preserv-
ing personal privacy. Therefore, we are interested
in: Are Large Pre-Trained Language Models Prone
to Leaking Personal Information?

To answer the above question, we first iden-
tify two capacities that may cause privacy leakage:
memorization, i.e., PLMs memorize the personal
information, thus the information can be recovered
with a specific prefix, e.g., tokens before the infor-
mation in the training data; and association, i.e.,
PLMs can associate the personal information with
its owner, thus attackers can query the information
with the owner’s name, e.g., the email address of
Tom is ____. If a model can only memorize but not
associate, though the sensitive information may be
leaked in some randomly generated text as shown
in Carlini et al. (2021), attackers cannot effectively
extract specific personal information since it is dif-
ficult to find the prefix to extract the information.
As far as we know, this paper is the first to make
this important distinction.

‘We focus on studying a specific kind of personal

Huang et al 2072
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Abstract

Natural language reflects our private lives and identities, making its privacy concerns as broad as
those of real life. Language models lack the ability to understand the context and sensitivity of text,
and tend to memorize phrases present in their training sets. An adversary can exploit this tendency
to extract training data. Depending on the nature of the content and the context in which this data
was collected, this could violate expectations of privacy. Thus, there is a growing interest in techniques
for training language models that preserve privacy. In this paper, we discuss the mismatch between
the narrow assumptions made by popular data protection techniques (data sanitization and differential
privacy), and the broadness of natural language and of privacy as a social norm. We argue that existing
protection methods cannot guarantee a generic and meaningful notion of privacy for language models.
We conclude that language models should be trained on text data which was explicitly produced for
public use.

1 Introduction

We use natural language to construct identities and communicate all our information in day-to-day life.
Humans naturally understand when sharing a sensitive piece of information is appropriate based on context.
It may be fine to share the same piece of information with one specific person or group, and a complete
violation of privacy to share in another context, or at another point in time. Between humans, we trust that
these implicit boundaries will be recognized and respected. As we build technologies that collect, store, and
process our natural language communication, it is important that these technologies do not violate human
notions of privacy or make use of data in ways beyond what is needed for the utility of the technology [71,/101].

Language models (LMs) underlie much natural language technology we regularly interact with, from
autocorrect to search engines and translation systems. Over the past few years, LMs have grown in size and
now utilize unprecedentedly large datasets of natural language making privacy risks in LMs a far reaching
problem. Prior work has already demonstrated that such models are prone to memorizing and regurgitating
large portions of their training data [12,/13,/51,/38,/91]. Worse, they are especially likely to memorize atypical
data points—which are more likely to represent privacy risks for the authors or subjects of these texts.

To address these privacy concerns, there is a growing body of literature that aims to create privacy-
preserving language models [64, 2,56, 98,84, 40, 79]. While humans navigate the complexities of language
and privacy by identifying appropriate contexts for sharing information, LMs are not currently designed to
do this [14,[72, 66, 49, 66| 50, 41]. Instead, the approach to preserving privacy in LMs has been to attempt
complete removal of private information from training data (data sanitization), or to design algorithms that
do not memorize private data, such as algorithms that satisfy differential privacy (DP) |28, /26].

Both methods make explicit and implicit assumptions about the structure of data to be
protected, the nature of private information, and requirements for privacy, that do not hold
for the majority of natural language data. Sanitization techniques assume that private information can

*Authors appear in alphabetical order

Brown et al., 2022

Related Work

Is public data truly public?

- Data shared to intentionally violate someone’s privacy (e.g., 'doxing”)

- Soclal media posts issued to a small target audience (“in-group sharing’

- Accidental leakage of other’s information (e.g.,"'conversations™)
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Security Games for Pll Leakage

Algorithm 8 Sentence-level MI (lines enclosed in solid box) = Algorithm 2 PII Extraction

vs. PII Inference (lines enclosed in dashed box). I: experiment EXTRACTION(T , D.&
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10: Chi~€&

11:
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Algorithm 7 PII Inference Game
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Summary of Results

Undefended models are highly

Vulnerable to all privacy attacks U DP Scr:f " DP + Scrub
Test Perplexity 14 16 16
E Precisi 0 0%
DP bounds, but does not prevent B o 0%
r Reconstruction Acc. 9% ~. 0% 0%
the eakage of Pl Inference Acc. (|C| = 100) ( 8% ; To > 1%
MI AUC . 0.8 0.5

Aggressive scrubbing harms utility
and can miss Pll (more data needed)

Motivates search for methods with better
-mpirical privacy/utility trade-off
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| imrtations

(General Applicability) We focus on fine-tuned GPT-2 Language Models (0.12b to 1.7b parameters).

(Syntactic Similarity) We consider only verbatim leakage (i.e., "John Doe” and "“J. Doe"” are different)
(PIl Association) Our extraction attacks study leakage in isolation (single Pll, no association)

(Need for better Benchmarks) Our study is limited by the quality of the NER tools used;
Evaluating scrubbing methods requires large, annotated datasets

I
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Outlook

We take a number of steps to reduce the risk that our models are used in a way that could
violate a person’s privacy rights. These include fine-tuning models to reject these types of requests,
removing personal information from the training dataset where feasible, creating automated model
evaluations, monitoring and responding to user attempts to generate this type of information, and
restricting this type of use in our terms and policies. Our efforts to expand context length and
improve embedding models for retrieval may help further limit privacy risks moving forward by
tying task performance more to the information a user brings to the model. We continue to research,
develop, and enhance technical and process mitigations in this area.

GP -4 Technical Report, 2005 16

1) Fine-tuning to reject requests
2) Data sanitation
3) Model evaluation
4) Query Monitoring (Post-Processing)
5) Terms of use
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Abstract—Language Models (LMs) have been shown to leak
information about training data through sentence-level member-
ship inference and reconstruction attacks. Understanding the
risk of LMs leaking Personally Identifiable Information (PII)
has received less attention, which can be attributed to the false
assumption that dataset curation techniques such as scrubbing
are sufficient to prevent PII leakage. Scrubbing techniques reduce
but do not prevent the risk of PII leakage: in practice scrubbing
is imperfect and must balance the trade-off between minimizing
disclosure and preserving the utility of the dataset. On the
other hand, it is unclear to which extent algorithmic defenses
such as differential privacy, designed to guarantee sentence-
or user-level privacy, prevent PII disclosure. In this work, we
introduce rigorous game-based definitions for three types of PII
leakage via black-box extraction, inference, and reconstruction
attacks with only API access to an LM. We empirically evaluate
the attacks against GPT-2 models fine-tuned with and without
defenses in three domains: case law, health care, and e-mails. Our
main contributions are (i) novel attacks that can extract up to
10x more PII sequences than existing attacks, (ii) showing that
sentence-level differential privacy reduces the risk of PII disclo-
sure but still leaks about 3% of PII sequences, and (iii) a subtle
connection between record-level membership inference and PII
reconstruction. Code to reproduce all experiments in the paper is

available at https:/github.com/microsoft/analysing_pii_leakage.
I. INTRODUCTION

Language Models (LMs) are fundamental to many natural
language processing tasks [22,49]. State-of-the-art LMs scale
to trillions of parameters [19] and are pre-trained on large text
corpora (e.g., 700GB [53]). Pre-trained LMs are adapted to
downstream tasks by fine-tuning on domain-specific datasets
such as human dialogs [7] or clinical health data [62] which
may contain private information.

Memorization is a privacy concern in LMs [9]. The threat
is that an attacker learns by whom the training data was
provided, known as membership inference [30, [43, [46, [38]
and about whom it contains information, known as data
extraction [9, 01, 29, 159, [69]. These two categories can be
disjoint but associations in the latter can be used to infer
information about the former. For LMs, data extraction is a
significant threat in practice since attackers with black-box
API access can extract at least 1% of the training data [1].

Existing work focuses on finding a lower bound on any kind
of memorization but does not differentiate public and private

SPart of this work was done during an internship at Microsoft Research.

“To cite this work, please refer to the full publication 4] in IEEE Security
and Privacy (S&P) 2023.
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Fig. 1: An illustration of PII extraction, reconstruction and

inference attack techniques.

leaked information. For example, leaking highly duplicated
common phrases is not a privacy violation according to the
GDPR [17] as opposed to leaking Personally Identifiable
Information (PII). In practice, any LM trained on real, sensitive
data has to protect PII, but memorization of PII is not well
understood. We believe that a comprehensive study on the risk
of PII memorization in LMs is missing.

Consider a service provider who wants to deploy a next-
word prediction LM for composing e-mails, Sjiglmtseiaaasies
Smart Compose [13]. Their goal is to train a
utility that does not leak PII and make it avai
box APIL The threat is an attacker who lea
names, addresses or other sensitive informaf
LM. Extracting any PII by itself, such as a p
can already pose a privacy threat. This threat is elevated
when an attacker can associate a piece of PII to a context,
for example, “In May 2022, | Laacs had chematheran
LHS”. As a part of this paper,
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Fig. 6: Fié. 6a|shows the correlation between the observed and estimated leakage. Fié. 6b|shows the precision and recall for
other entity classes on the ECHR dataset. Fig. 6¢c|shows the mean inference accuracy relative to the context length, which is
the length of the combined prefix and suffix for a masked query.

GPT2-Small GPT2-Medium GPT2-Large GPT2-XL
NoDP =8 NoDP ==8 No DP e=8 No DP e=8
ECHR(TAB) 0.78% 0.24% 1.21% 0.32% 5.81% 0.48% 4.30% 0.39%
ECHR (Ours, |C| = 64) 225% 0.44% 336% 087% 1827% 0.55% 13.11% 041%
Enron (TAB) 0.59% 0.04% 0.67% 0.04% 1.75% 0.04% 2.19% 0.19%
Enron (Ours, |C| = 64) 629% 0.49% 7.26% 052% 12.68% 0.55% 15.25% 0.53%
Yelp-Health (TAB) 0.33% 0.24% 0.37% 0.14%  0.65% 0.12% 1.99% 0.12%

Yelp-Health (Ours, [C| = 64) 0.42%

0.32%

131% 032% 1.69% 035% 6.40% 0.36%

TABLE IV: Results of PII reconstruction attacks on the entity class “person”. Bold numbers represent the best attack per
dataset and LM. We compare our results with the TAB attack [28] on three datasets.
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Fig. 7: Connecting sentence-level membership inference with PII reconstruction in GPT-2-Large. |7_q shows the ROC curve
against our fine-tuned model using a shadow model attack on ECHR. |7b| shows that the memorization score of generated
sequences is nearly zero andE shows that the memorization score correlates with the probability of correct PII reconstruction.

Undefended DP Scrub DP + Scrub

Test Perplexity 1479 14 16 16
Extract Precision 30% 3% 0% 0%
Extract Recall 23% 3% 0% 0%
Reconstruction Acc. 18% 1% 0% 0%
Inference Acc. (|C| = 100)  70% 8% 1% 1%
MI AUC 0.96 0.5 0.82 0.5

TABLE VI: Our results on ECHR for GPT-2-Large summa-
rize the privacy-utility trade-off. We show the undefended
model’s perplexity with/without masking generated PII. The
undefended model has the lowest perplexity but the highest
leakage. DP with ¢ = 8 mitigates MI and (partially) PII
leakage. Scrubbing only prevents PII leakage. DP with scrub-
bing mitigates all the privacy attacks but suffers from utility
degradation.

e« DP does not completely eliminate leakage from PII
traction. We demonstrate that an
with up to 10% accuracy (given
practical setting.

I (aggressive) PII scrubbing limit
ating the search for defenses with
y/utility trade-offs.

V. DISCUSSION AND LIMITATIONS

itations of our method-
ed by our findings.
ir methodology to
ential extensions to
and associations in
masked language
models and identify
further research motivated by our findings: how to best com-
bine DP training and scrubbing, optimizing attacks for other
arks.

s on defining
formulas for
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evaluating leakage of sensitive sequences of tokens categorized
as PII. That said, we bring attention to the point that our
methodology is generally applicable to any notion of sensitive
input. As long as one has an effective method to correctly iden-
tify inputs deemed sensitive, our methodology can be adapted
to measure the protection offered by existing ML pipelines
in mitigating the leakage of any sensitive information. In
practice, it is often hard to draw a clear boundary around
what constitutes sensitive information, which is an important
but orthogonal problem.

Syntactic and Semantic Similarity. We consider verbatim
matches of PII tokens as leakage, however, our methods can be
adapted to account for both syntactic and semantic similarity.
For example, “Mr. John Doe” and “J. Doe” could be inferred
to be the same person. Similarly, PII reconstruction and PII
inference attacks can employ contexts with similar meaning
to improve attack results.

Advanced Attacks. We consider leakage of PII sequences
from the training dataset in isolation, irrespective of the
context where it appears and other extracted PII. Extracted
PII sequences can be further leveraged in advanced attacks
that explore associations among them and reveal additional
private information about the training dataset, thereby enabling
linkability attacks.

Utility-preserving Scrubbing. Our empirical evaluation
demonstrates that differential privacy is partially effective in
mitigating leakage of PII. Based on this observation, existing
scrubbing techniques can be adapted to take into consideration
the partial protection offered by DP and heuristically scrub
only PII that remains unprotected (e.g. because it occurs
many times). Such a DP-informed scrubbing would allow for
improving model utility while maintaing a privacy level equiv-
alent to a naive combination of DP training and scrubbing.

Comparison to Masked Language Models. Pior work
has explored PII reconstruction in the clinical health set-
ting [37,/61] with masked language models (MLMs) based on
the BERT architecture |14). MLMs are trained to reconstruct

Connection between Membership Inference and PIl Reconstruction
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