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Disinformation
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Euronews, May 2023 [2]

Business Insider, June 2023 [3]

Aljazeera, May 2023 [4]



Personalized Attacks
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NBC, June 2023 [16]

APN news,  April 2023 [15]

FBI,  June 2023 [17]



 Deep Image Generation
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High-Quality Synthetic Images

Midjourney



Draft Legislation
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May of 2023, EU AI Act

EU AI Act



Controlling Misuse
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OpenAI, Terms of Use

OpenAI ToS



Watermarking Pledge
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July 2023, Reuters News Article

Reuters



Watermarking Pledge (against Misuse)
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Google SynthID, August 29th

SynthID



Overview

ICLR’21 Oakland’22

Untrustworthy Users

In 
Preparation

Image Classification Image Generation Text Generation
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USENIX’23 Under 
Submission



Controlling Misuse
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1. No (open) release of the model   

GigaGAN, Kang et al, 2023 [8]Imagen, Saharia et al, 2022 [7]



Controlling Misuse
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2. Staged (open) release   

OpenAI, 2019 [9]

1. No (open) release of the model   



Controlling Misuse
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OpenAI, Content Moderation

OpenAI, Data Usage Policy

2. Staged (open) release   

1. No (open) release of the model   

3. Full (closed) release / Query Monitoring  



Controlling Misuse
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2. Staged (open) release   

1. No (open) release of the model   

3. Full (closed) release / Query Monitoring  

Nvidia, Deepfake Detector [10]

Limitations: 
- Adaptive attacks possible [11]

- Long term effectiveness unknown

4. Deepfake detectors  



Controlling Misuse
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2. Staged (open) release   

1. No (open) release of the model   

3. Full (closed) release / Query Monitoring  

4. Deepfake detectors  

Could be user-specific
5. Watermarking bob



Watermarking Method

Generate Key Embed

A randomized function
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verifies the presence

 of the message
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Verify
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Watermarking Method

Generate Key Embed Verify
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A randomized function
to generate a (secret)

watermarking key

Given a generator, key and
 message, return parameters of a 

watermarked generator

Given an image and a key,
verifies the presence

 of the message



Watermark Verification
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White-box: 

Black-box

No-box

Parameters Intermediate Activations Input Output
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Watermark Verification
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Watermark Verification
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White-box: 

Black-box

No-box

Parameters Intermediate Activations Input Output

Input Output

Output

X X

XX X

No change Secret
Query Shift



Terminology
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bob

Generate Key

Embed

Verify

Watermarking 
MethodWatermark

+θG +

Secret Key

+

θ*G Generator

Confidencep



Latent Diffusion Models (LDMs)
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Forward DiffusionImage to Latent

Backward DiffusionLatent to Image

Figure from [9]



Tree-Ring Watermarks (TRW)
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TRW Paper



TRW - Effectiveness and Robustness
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TRW Paper

Effectiveness Robustness



TRW - Testing Robustness
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Only
non-adaptive

Attackers

TRW Paper



Testing Robustness (SynthID)
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Google SynthID, August 29th



Threat Model
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No access to the 
secret key

Watermarking 
Method

θG

Generate Key

Embed

Verify

++

Surrogate Key

+

θ*G Generator

Confidencep

Watermarked
 Generator

Surrogate
Generator

(Less Capable)

🏆 Attacker’s Goals:
(1) Evade detection ( )
(2) Preserve image quality

p ≥ 0.01



Instantiating Adaptive Attacks
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1.) KeyGen  2.) Iteratively Optimize Attack Parameters 

Surrogate 
Key τ′ 

θ𝒜

ℰ 𝒟

 3.) KeyGen

Secret 
Key τ

 4.) Embed  5.) Generate

Generation

Embedded 
Message

Attack Preparation

Verify Loss

Quality Loss
 

6.) Evasion with Optimized Parameters

Verification

 

7.) Extract Message

 

8.) Compute p-value

θ𝒜

ℰ𝒟

∇θ𝒜

Evasion
Extract from 

Image
Extracted 
Message

“A teddy bear 
in Washington”

Generator



Optimization Goal
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Image after attack

Surrogate key

Perceptual Similarity before and after ⇓

Best attack

For any 
Key-message pair

Not necessarily 
differentiable!

τ′ 
GWm



Optimization Goal
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Simple solution to make VERIFY differentiable ..

Train a deep classifier to extract the message

KeyGen Sample message Embed Detect Update
Detector

θ*G+



Optimization Goal
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KeyGen Sample message Embed Detect Update
Detector

θ*G+

Observation: In existing methods, KeyGen is not (sufficiently) randomized 

Using a single surrogate key gives us a good approximation already



Instantiating Adaptive Attacks
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Less than 1 million parameters Around 80 million parameters



Instantiating Adaptive Attacks
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Instantiating Adaptive Attacks

36

TRW

Adversarial

Compression

Adversarial

Noise

WDM

ϵ = 8/255, p = 0.13

125

ϵ = 2/255, p = 0.09

r = 1, p = 0.69 r = 1, p = 0.79

DWT

r = 1, p = 0.30

ϵ = 6/255, p = 0.18

DWT-SVD RivaGAN

ϵ = 4/255, p = 0.29

r = 1, p = 1.00
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Instantiating Adaptive Attacks
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Instantiating Adaptive Attacks
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Comparison to Non-Adaptive Attacks
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Adaptive Attacks Non-adaptive Attacks



Visual Inspection
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P-value = 0.28

WatermarkedNo Watermark

P-value = 1.77e-09

Attacked

P-value = 0.52

TRW: “Cars are parked on the street near an old building”

WDM: “A bench at the beach next to the sea”

P-value = 3.73-11 P-value = 0.08P-value = 0.13

DWT: “A blue train on some train tracks about to go under a bridge”

P-value = 2.33-10 P-value = 0.57P-value = 0.30

DWT-SVD: “A white horse standing on top of a dirt field.”

P-value = 2.33-10 P-value = 0.05P-value = 0.30

RivaGAN: “Donuts with frosting and glazed toppings sit on table next to coffee maker”

P-value = 2.33-10 P-value = 0.43P-value = 0.30

ϵ = 2/255, L∞-norm
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Can we defend against Adaptive Attackers?
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Image after attack

Surrogate key

Image quality before and after

Best parameters

For any 
Key-message pair

Not necessarily 
differentiable!



Can we defend against Adaptive Attackers?
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Possible Solutions

Learnable watermarks, in which we train encoder-decoder pairs
But how can we design them?

Problem 

TRW is not easily fixable against these adaptive attacks



Can we defend against Adaptive Attackers?
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Idea 1: Post-processing  

𝒟ℰθG

Generate Post-process Adaptive 
Attack

𝒟ℰ

Verify

p = 0.21

Update auto encoder

Problem: Is the space of possible defense strategies large enough? 
There may not be an (efficient) solution!



Can we defend against Adaptive Attackers?
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Idea 2: Distributional Shift

𝒟ℰθG

Generate Post-process Adaptive 
Attack

𝒟ℰ

Verify

p = 0.01

Update mapper

Problem: Is there an (efficient) solution? 

Backward
Diffusion



Challenges of Learnable Watermarking

1.) One-shot agents (e.g., GANs) 

GeneratorLatent

2.) Iterative Optimization (e.g., Stable Diffusion)

Noise Denoise 1 Denoise N
..

Prompt LM LM
..

3.) Discrete Iterative Optimization (e.g., Language Models)

“A brown horse rides on a ..” 

All gradients observable
Alignment through pivot

Continuous & high-entropy
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Discussion
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Extension to Language/Speech?

How scalable are these attacks?

Will open-source model contain robust watermarks? 

Certifiably robust watermarking?

Limitations

Ethical considerations



The Paper contains more Information
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Extended Evaluation

Detailed Algorithmic Descriptions

Discussion & Ethics



The Paper contains more Information
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Evaluation on other datasets

Runtime Analysis

Detailed Algorithmic descriptions 
for all methods

Robustness with more attacks



How Reliable is Watermarking for
Generative Machine Learning?

 Source Code

Source code: https://github.com/dnn-security/gan-watermark   

USENIX’23

Nils Lukas

https://github.com/dnn-security/gan-watermark
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Best Adaptive Attacks
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DWT-SVD: “A white horse standing on top of a dirt field.”
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RivaGAN: “Donuts with frosting and glazed toppings sit on table next to coffee maker”

P-value = 2.33-10 P-value = 0.43P-value = 0.30
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Detectability

39 101 102 103
Attacker's Dataset Size

0.5

0.6

0.7

0.8

0.9

1.0

De
te
ct
i 
n 
Ac
cu
ra
c'
  
n 
Un

se
en

 Im
ag

es

Detecti n Accurac' versus Attacker's Dataset Size
Capacit'=60 bits
Capacit'=40 bits
Capacit'=20 bits

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
Truncati n (�)

0.5

0.6

0.7

0.8

0.9

1.0

De
te
ct
i 
n 
Ac
cu
ra
cy
  
n 
Un

se
en

 Im
ag

es

Detecti n Accuracy versus Truncati n
Capacity=60 bits
Capacity=40 bits
Capacity=20 bits

Low variation High variation

Variation makes detectability more difficult for the adversary 

55



Reverse Pivotal Tuning

White-box 1) Invert real images into the generator’s latent space

2) Regularize generator with Pivotal Tuning and LPIPS loss to synthesize real images

GeneratorLatent code z LPIPS… Invert

Adversary’s Data
Robust watermarking unlikely in 

open-source models
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Robustness
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can remove any watermark
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Summary of Results
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White-boxBlack-box

Effectiveness 40 bits at less than 0.3 FID

Scalability 
No retraining,

< 2 GPU hours (FFHQ-256) 

Detectability Scales with output diversity

The first post-hoc learnable watermark for deep image generators

Robustness


