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Risks of GenAI Today: Authenticity
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• Generating high-quality content is easy and cheap

• Can lead to an erosion of trust in digital media

• Threat actors: 
A. Highly capable entities (e.g., targeted disinformation) 
B. Restricted capabilities (e.g., ‘everyday users’)

Millions of users, some may ‘misuse’ GenAI

24/10/2024 23/09/2024

Examples: Training Data Contamination, Combating Misinformation, 
Data Signature and Attribution, Fraud Detection
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Potential Solutions
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Post-hoc DetectionRetrieval-based Watermarking

Dataset

LMM

User

API Access

- High storage & retrieval costs 
- No open source 
- No user privacy

Cons

DNN

LMM

Real Data

24/07/2023

- Unreliable 
- Low accuracy

Cons

LMM

User

API Access

Secret Key EMBED

LMM

DETECT

- Key must be kept secret 
- Generation process must be modified

Cons
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KEYGEN

WATERMARK
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California Senate Bill-942 (Sept 19, 2024)
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California AI Transparency Act, Chapter 25

*If the service has more than 1 million monthly users/visitors p.a., 

and the service is publicly accessible California SB-942

Free, audiovisual content, public detector
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California Senate Bill-942 (Sept 19, 2024)
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*If the service has more than 1 million monthly users/visitors p.a., 

and the service is publicly accessible

Visible to the user, robust

California SB-942

California AI Transparency Act, Chapter 25
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LMM

User

API Access

Secret Key EMBED

LMM

DETECT

Robustness 

Unforgeability 

ε(x) Detect

Quality 
Property

𝒜 Detect

x

x′￼

Q
SoK: Watermarking for AI-Generated Content, Zhao et al., 2024

KEYGEN

WATERMARK

x′￼

Robustness
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LMM
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What is the Security Definition? 
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Scott Aaronson Slides, from WMARK@ICLR’25 

Sandcastles in the Storm: Revisiting the (Im)possibility of Strong Watermarking,  
Harel-Canada et al., 2025
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What is the Security Definition? 
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Under what assumptions can watermarks be robust? 

Scott Aaronson Slides, from WMARK@ICLR’25 
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Attack Success Criteria
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Threat (from earlier) 

Goals
• Choose a text quality metric  on the prompt  and output (e.g., CLIPScore, LLM-as-a-Judge,..) 

• Attacker’s best baseline quality is  (using open models) 

• Given , can the attacker generate  s.t.  AND 

Q π
q1

x ← Watermark(π) x′￼ ← ε(x) Q(π, x′￼) > q1 Detect(x′￼) > τ
Attacker’s advantage using the watermarked service 
 in generating high-quality content WITHOUT a watermark
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Implementations are Open-Source
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Microsoft Responsible AI Team

Google DeepMind

FAIR, Meta

MicrosoftMeta
Google  

DeepMind
Implementations are public .. 
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Threat Model
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Watermarked 
Target Model

LMM

Model Provider Adversary

Secret 
Key

KEYGEN(..)

EMBED(..)

DETECT(..) 

Seed, Parameter

Model, Key, Message

Image, Key, Message

Algorithm Inputs No-box: No access to the target model

Offline: No access to VERIFY

API Access

DETECT

WATERMARK

Adaptive: Knows watermarking scheme (but 
not the inputs used by the provider)

Private: No access to the secret key or randomness

Surrogate Model: Can access less capable,  
open-source models 

Computationally bounded: Cannot train own LLM
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Evaluating and Improving Robustness
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Our Models 
are open source 

ICML’25, Spotlight
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Recap: Red-Green Watermark
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Step 1.) Draw a pseudo-random number  fτ(x0, . . . , x3)
Step 2.) Partition vocabulary into green and red list 

Step 3.) Bias tokens in the green list 

Step 4.) Softmax and sample

Step 5.) Repeat

I saw a cat in the 

LMM House Street Bar … <END>

5.1
2.4

1.9
-5.1

Next-token prediction logit

-2.0

-2.0
+2.0

+2.0

street

Verify 
Given a text , count green tokens 

and conduct a statistical test
x

Watermark Generate

A Watermark for Large Language Models, Kirchenbauer et al., 2023

http://www.apple.com
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NeurIPS Competition (Dec, 2024)

15

77 teams, 2 tracks, total of 7,000 USD prize money 

GenAI Workshop@ICLR’25, Oral
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Finding Adversarial Corruption Channels
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Robustness

An attacker can adversarially optimize for a channel that undermines robustness

Find a corruption (e.g., paraphraser) … 

so that over the KeyGen randomness …

Any watermarked surrogate model ..

Is not robust against this channel!

The attacker can prepare offline by locally ‘simulating’ the watermark
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Finding Adversarial Corruption Channels
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Problems:  

- We need demonstrations (watermarked, non-watermarked) which we do not have 
- Cannot easily backpropagate through LLMs to optimize for non-watermarked text

Propose Solution:  

     - Adaptively generate pairs via base model and rejection sampling 
     - Optimize over inherent KEYGEN, EMBED and model uncertainty
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LLMs: Optimization via RL + Rejection Sampling
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Surrogate 
Model

LLM

Hθ

Paraphrase 
Model

LLM

Pθ

q r r′￼

  
(Seed, Message, Query)

γ, m′￼, q1.)

KEYGEN2.)

EMBED3.)
LLM

Sample inputs 

Generate key 

Embed watermark
Repeat c times

QUALITY

VERIFY
Reward1

Reward2

…

RewardC

𝒟Preference 
Dataset

DPO
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Compute versus Evasion Rates
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Collect preference dataset 
through rejection sampling  

Collecting 7,000 samples  
requires ~5 GPU hours (2 USD per GPU hour)

Optimization takes ~2 GPU hours
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Compute versus Evasion Rates
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Our models are up to  smaller than the provider’s model46 ×
Compute budget ≤ $10 USD

Evasion Rate: , against 7 watermarking methods96.7 %

Provider uses a Llama3.1-70b model



Speaker: Nils LukasAdaptively Robust and Forgery-Resistant Watermarking, AVSeal Speaker Series@FAIR

Adaptive versus Non-Adaptive Attacks
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Other Modalities (e.g., Image, Video)
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Why do Adaptive Attacks Work?
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Step 1.) Draw pseudo-random numbers using seed   fτ(x0, . . . , x3)
Step 2.) Partition vocabulary into green and red list 

Step 3.) Bias logits to promote green list tokens

Step 4.) Softmax and sample

Step 5.) Repeat

I saw a cat in the 

LMM House Street Bar … <END>

5.1
2.4

1.9
-5.1

Next-token prediction logit

-2.0

-2.0
+2.0

+2.0

street

Verify 
Given a text , and a secret key   
count green tokens and compare 

to expected value

x τ

Watermark Generate

x0, x1, x2, x3

Analysis

1.) Avoid repeating sequences 

2.) Watermark is most likely hidden in  
high-entropy text (e.g., names)

3.) Windowed context for seeding 
is vulnerable to paraphrase calibration  

(e.g., lexical diversity, restructuring) 
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Ideas for Improvement
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I saw a cat in the 

LMM House Street Bar … <END>

5.1
2.4

1.9
-5.1

Next-token prediction logit

-2.0

-2.0
+2.0

+2.0

street
x0, x1, x2, x3

Analysis

1.) Avoid repeating sequences 

2.) Watermark is most likely hidden in  
high-entropy text (e.g., names)

3.) Windowed context for seeding 
is vulnerable to paraphrase calibration  

(e.g., lexical diversity, restructuring) 

1.) Semantic Watermarking: Instead of labelling tokens, label entire sequences (robust against paraphrasing)

2.) Adaptive Defenses: Can we defend when the attacker uses known paraphrasers?

3.) Auto-Blue Teaming: Bi-level optimization against adaptive attackers 

4.) Post-hoc Certifi
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Forgery-Resistant Watermarking
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Detect

Not Generated 
By Provider
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Forgery - Threat Model
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Watermarked 
Target Model

LMM

Model Provider Adversary

Secret 
Key

Message

KEYGEN(..)

EMBED(..)

DETECT(..) 

Seed, Parameter

Model, Key, Message

Image, Key, Message

Algorithm Inputs No-box: No access to the target model

Offline: No access to VERIFY

API Access

DETECT

WATERMARK

Adaptive: Knows watermarking scheme (but 
not the inputs used by the provider)

Private: No access to the secret key or randomness

Surrogate Model: Can access less capable,  
open-source models 

Computationally bounded: Cannot train own LLM

Harmful Content: Produce content that cannot be  
Produced by the provider (e.g., due to safety filter) 
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Forgery Attacks
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Watermarked 
Data

LMM
API Access

Secret Key Embed

LMM

Detect

LMM

Fine-tuned 
Model

Learn watermark  
signal

Generate & Add signal

Or: Remove signal to evade detection

top-1

Average

e.g., Watermark Stealing in Large Language Models,  
Jovanović et al., 2024

Attacker’s success typically scales with the number of queries
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Randomized Key Selection
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Watermarked 
Data

API Access

LMM

Fine-tuned 
Model

Learn watermark  
bias

Generate & Add bias

Or: Remove bias to evade detection
 Secret KeysK

Generate
Provider’s LLM

Randomly Sample  
Single Key

Prompt

0 keys: No Watermark 
1 key: Authentic 

>1 keys: Inauthentic

Verify

4.12 5.55 4.61

Detected Keys 
z-scores

Inauthentic (Forged Sample)

Will contain multiple keys 

K
N

K
N

K
N

…

Same proportion of per-key content

N=10,000 samples
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Adaptive Attacks against Our Method 
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Watermarked 
Data

API Access

LMM

Fine-tuned 
Model

Learn watermark  
bias

Generate & Add bias

Or: Remove bias to evade detection
 Secret KeysK

Generate
Provider’s LLM

Randomly Sample  
Single Key

Prompt

0 keys: No Watermark 
1 key: Authentic 

>1 keys: Inauthentic

Verify

4.12 5.55 4.61

Detected Keys 
z-scores

Inauthentic (Forged Sample)

Will contain multiple keys 

Can adaptive attackers fare better?
K
N

K
N

K
N

…

Same proportion of per-key content

Attacker knows labels for a  
subset of watermarked content 

68%
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Thank you for your attention!

Adaptively Robust and  
Forgery-Resistant Watermarking

Nils Lukas 
Assistant Prof. @ML department


